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Abstract—Buildings with shared spaces such as corporate
office buildings, university dorms, etc. are occupied by multiple
occupants who typically have different temperature preferences.
Attaining a common temperature set-point that is agreeable to all
users (occupants) in such a multi-occupant space is a challenging
problem. Furthermore, the ideal temperature set-point should
optimally trade off the building energy cost with the aggregate
discomfort of all the occupants. However, the information on
the comfort range (function) is held privately by each occupant.
Using occupant-differentiated dynamically-adjusted penalty fac-
tor as feedback signals, we propose a distributed solution which
ensures that a consensus is attained among all occupants upon
convergence, irrespective of their ideal temperature preferences
being in coherence or conflicting. Occupants are only assumed to
be rational, in that they choose their own temperature set-points
so as to minimize their individual energy cost plus discomfort.
We establish the convergence of the proposed algorithm to the
optimal temperature set-point vector that minimizes the sum of
the energy cost and the aggregate discomfort of all occupants in a
multi-zone building. Simulations with realistic parameter settings
illustrate validation of our theoretical claims and provide insights
on the dynamics of the system with a mobile user population.

Note to Practitioners—This paper was motivated by the prob-
lem of computing an optimal commonly-agreeable temperature
set-point in spaces with multiple occupants. Consider office floors
with cubicles, conference rooms, student dorms, homes, and
other multi-occupant spaces where temperature set-points on
thermostats are chosen irrespective of the number of occupants
and their individual preferences. This existing approach is not
only non user-centric but also sub-optimal from both energy
consumption and occupant satisfaction/productivity perspectives.
It is thus highly desirable for such multi-occupant spaces to
have a mechanism that would take into account each occupant’s
individual comfort preference and the energy cost, to come up
with an optimal temperature set-point. Individual occupant’s
feedback and preference can be obtained through wearable
sensors or smart phone applications. In this work we propose
an algorithm that takes into account each occupant’s preferences
along with the thermal correlations between the different zones
in a building, to arrive at optimal temperature set-points for all
the zones of the building in a coordinated manner. This approach
is therefore also more performance-efficient than controlling the
temperature set-point of each zone in the building in an isolated
manner. We establish convergence of our algorithm and use the
parameters of an experimental facility to simulate and evaluate
the proposed algorithm. The proposed solution can be deployed
in multi-occupant spaces to make the occupants of the entire
space more comfortable, and simultaneously facilitate energy
efficient operation of the space. The occupants can provide their
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temperature preference one time (or when it changes) using smart
phone or desktop application or wearables, which is then utilized
to calculate the optimal temperature set-point of various zones
in real time. The optimal set-point would be updated in real time
based on change in occupancy and or occupant preference.

Index Terms—Temperature consensus, human-centered build-
ing environment control, collaborative comfort management,
smart building energy management.

I. INTRODUCTION

Buildings that can maintain the indoor conditions as per the
comfort level of its occupants, irrespective of the variations
in the external weather, is one of the minimal expectations
of a developed society. With changes in general living style
and consumer expectations over the past decade, the demand
for comfort levels have grown more and more personalized.
This personal comfort level expectations pose a conflicting
situation in multi-occupant spaces such as corporate office
buildings, student dorms, buses and airplanes etc., where each
occupant has its own range of comfortable temperature distri-
bution. This range also depends on the occupant’s individual
characteristics, including metabolism rate, age and external
factors such as attire, physical and mental condition, and level
of tolerance; this individual range can also vary depending on
other environmental factors. In shared multi-occupant spaces
personal comfort levels are affected both by the presence of
co-occupants and the correlation between the temperatures
in the different zones and rooms occupied. Arriving at a
consensus among all the occupants of different rooms and
zones in a building is therefore an important but challenging
problem. With the rising energy cost and emphasis on energy
conservation, the total energy cost also needs to be accounted
for when trying to achieve consensus among the occupants of
a building.

Energy usage in buildings, both residential and commercial,
accounts for one major source of energy consumption both
within the US and worldwide. Data suggests that nearly 40%
of the total energy consumption in US, and 20% of the total
energy consumption worldwide, is attributed to residential and
commercial building usage [1]. Numerous design and solution
approaches have been proposed for efficient control and op-
eration of building heating, ventilation, and air-conditioning
(HVAC) systems. The approaches taken so far can be broadly
classified into those focusing on optimizing energy usage by
utilizing variable electricity rates [2], [3], [4], [5], active and
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passive thermal energy storage [4], [5], and model predic-
tive control approach exploiting information through weather
forecast [6], [7], [8], [9]. More recently there have also been
focus on using occupant feedback at binary/multiple levels to
determine the direction of temperature adjustment based on
the average user vote [10], [11], [12] and achieving energy
optimization along with occupant discomfort minimization
[13].

With the development of HVAC systems, there has been a
multitude of studies on occupant thermal comfort modeling.
Thermal comfort has been studied extensively for many years,
and the existing models can be combined into three different
categories: the chamber study model, models based on the
human body physiology and the field study comfort models.
Chamber study model is based on averaging a large number
of data points to map thermal comfort from environmental
and personal factors to a 7-level comfort value scale. The
Predicted Mean Vote - Predicted Percent Dissatisfied (PMV-
PPD) [14], [15] is one of the popular chamber study based
comfort models. Some of the thermal comfort models based
on human body physiology are: Gagge’s core to skin model
[16], Stolwijk’s comfort model for multi-human segments
[17], and Zhang et al.’s sensation on human body segments
and for the whole body [18]. Some adaptive comfort models
have been developed in field study, viz. Humphreys [19] and
[20]. Note that these works focus on average thermal comfort
models instead of personalized comfort modeling. Some more
recent works have conducted experimental study for a group
of occupants [21], and have presented thermal comfort model
for a single person [22]. However, these are based on thermal
complaint behavior using one-class classifier. In this work we
model the initial estimate of the individual occupant thermal
discomfort function as a convex quadratic curve of temperature
variation, based on the PMV-PPD model. Note that such group
comfort models only capture average behavior, and are not
particularly useful in maximizing aggregate comfort for a
specific set of occupants in a shared space, whose individual
thermal preferences may differ from each other. In our work,
therefore, we take into consideration discomfort functions of
the occupants individually - modeled as convex functions.
Our model not only captures the differences across occupants
in their comfortable temperature range, but also individual
differences in their sensitivities (degree of discomfort) for
temperature variations beyond their range of comfort.

Achieving a common temperature set-point that is both
energy optimal and acceptable to the occupants requires
consensus among all the occupants and the central building
management system (building operator). Achieving this in a
distributed framework, where the exact discomfort functions
are held privately by each occupant, remains an open ques-
tion which we seek to address in this paper. We pose the
collaborative building temperature control problem as a con-
vex optimization question, and develop a distributed solution
approach by utilizing a consensus algorithm framework. The
minimization objective is an aggregate of all the occupant
discomfort functions and the total energy cost, subject to
the constraint of common zonal temperatures. Penalty factor
per unit temperature change serves as the feedback signal

to the occupants, to drive them to a consensus on zonal
temperatures that optimize the overall discomfort plus energy
cost objective as mentioned above. The consensus algorithm
that we develop, through the use of the alternating direction
method of multipliers (ADMM), is amenable to distributed
implementation and has the following appealing properties.
Firstly, occupants (or their agents) are only assumed to be
rational, in that they choose their preferred temperature set-
points so as to minimize their personal discomfort plus energy
cost, given the pricing signals. In other words, the occupants
are not required to explicitly declare their discomfort functions
(which can be held privately), but only react rationally to the
pricing signals by choosing their preferred temperature set-
point. The occupants can also provide their feedback in the
form of ‘hot/cold’, which would be captured into modifying
their discomfort functions accordingly. On the other hand, the
building thermal management system (BTMS) chooses the
zonal temperature set-points to maximize the overall profit
of the building operator (for the current cost); the penalty
factor signals are then updated so as to attain consensus among
the occupants, and with the building operator, on the zonal
temperatures. Finally, as we formally show, the algorithm
converges to the optimal zonal temperatures, from which
rational occupants would not have any incentive to deviate. In
terms of practical implementation, occupant feedback could
be obtained through a smart phone application, and the zonal
temperature set-points could be calculated by the building
operator on a central server. Note that this functionality of the
application might as well be implemented on the central server
itself for the entire building. The smart phone application
in that case would provide an interface for capturing user
response. A high level work flow of the proposed algorithm
is depicted in Figure 1.

Fig. 1. High level process flow depiction of the proposed algorithm.

The paper is structured as follows. The consensus algorithm,
which constitutes the main contribution of this work, along
with the optimization objective, solution approach and conver-
gence analysis is presented in Section II. Section III provides
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the building thermal model and the control law we use to
simulate our algorithm. We evaluate our approach through
simulations and also present a sensitivity study in Section IV,
and finally conclude in Section V.

II. CONSENSUS ALGORITHM AND ITS ANALYSIS

In this section, we first describe our optimization objective
(Section II-A) and solution approach (Section II-B). This is
followed by the distributed consensus algorithm (Section II-C)
and its convergence analysis (Section II-D), and finally profit
analysis in Section II-E.

A. Optimization Objective

Consider a building with m zones, and let Sj represent the
set of occupants located in zone j of the building. Let Di

represent the discomfort function of occupant i, and function
E the overall energy cost. Then a reasonable objective is to
attain (in steady state) the zonal temperature vector y that
achieves the following objective:

minimize
m∑
j=1

∑
i∈Sj

Di(yj) + E(u). (1)

where yj is the temperature of zone j, and u is the heat
input vector that is required to attain those zonal temperatures.
Note that an occupant i located in zone j (i.e., i ∈ Sj)
experiences temperature yj , and therefore its discomfort can
be represented as Di(yj). We assume the discomfort function
Di(yj) as convex in its argument yj . It is worth noting that the
discomfort function need not be “strictly” convex. This allows
for the occupants to be insensitive to temperature fluctuations
over a certain range; or in other words, the discomfort function
could be flat over the occupant’s “comfort range”.

In the above, E(u) is assumed to be a convex function of
the control input vector u. For the sake of definiteness, we use
E(u) to be of the following quadratic form (although other
convex forms of the function E(u) are also allowed by our
framework):

E(u) = uTΓu, (2)

where Γ is a positive definite matrix. The Γ matrix captures
the weight of the energy cost relative to the total discomfort
cost. In practice, it could be determined by the actual cost of
energy, as well as additional input from the building operator
to determine how much relative weight to associate with the
energy cost as compared to the occupant discomfort cost.

Finally, since the optimization variable in the objective
function (1) is only the zonal temperature vector y, the
relationship between the heat input vector u and the zonal
temperature vector y needs to be stated to make the formula
meaningful. We can express u = g(y) and using that write
the energy cost E(u) as G(y) = E

(
g(y)

)
, where the function

G(y) is convex in y. Taking the case of an RC model, we
would express function g(.) in terms of model parameters for
the purpose of simulation later in section III-A.

B. Solution Approach

Before we describe the distributed consensus algorithm, we
provide an overview of the solution approach. Note that if the
individual occupant (user) discomfort functions are assumed
to be known to the building operator, the optimal zonal
temperature vector y∗ could be computed directly. Such a
centralized approach suffers from several practical limitations,
however. Firstly, reporting the entire discomfort function to the
building operator is complex, and the occupant may not even
be able to correctly estimate its discomfort function. Secondly,
even if we assume that the occupant knows its discomfort
function exactly, there is no incentive for it to report the same
truthfully. In practice, therefore, it may be more desirable
to have a mechanism through which the building operator
indirectly learns about the true discomfort functions of the
occupants, who are providing their temperature preference
feedback in a simple and convenient format, acting in best
response to some penalty factor signals provided by the build-
ing operator as depicted in Figure 2. Furthermore, the penalty
factor signals should be such that it guides the occupants
towards a consensus, i.e., rational users (acting in self-interest)
in a zone will end up agreeing on their temperature choice
for each zone. The distributed consensus algorithm that we
describe in the next subsection works according to the above
principles.

Fig. 2. Distributed consensus algorithm with the building HVAC system.

To provide an overview of our approach, we first introduce
new notations to denote the choice of zonal temperatures by
the occupants and the building thermal management system
(BTMS); these temperature choices will in general be different
from the actual (current) zonal temperatures. Let xij denote
the desired temperature of occupant i ∈ Sj located in zone
j. Let zj denote the target temperature of zone j as set by
the BTMS. Then vector z represents the target temperature
of the entire building consisting of m zones. In general, xij
for any occupant i ∈ Sj can differ from zj ; the actual zonal
temperature yj could also differ from these temperatures. On
convergence however, the consensus algorithm ensures that xij
for all occupants i ∈ Sj equals zj , which optimizes the ob-
jective function in (1) subject to (26). The zonal temperatures
obtained through consensus is then attained in the building
by utilizing some temperature set-point based HVAC control
system. This results in the decomposability of the problem into
two parts: (i) the derivation of the optimal zonal temperatures
through the consensus between the occupants and the BTMS;



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

(ii) attaining the temperature set-points resulting from (i) in the
actual building. The key novelty of this work is in developing
a distributed consensus algorithm for (i), which we describe
in Section II-C. Some standard or existing control laws that
could be utilized to solve (ii) is discussed in the subsection
(Section III-B).

Using a smart phone/tablet application, that serves as an
interface, the occupants provide their comfort preference as a
one time input. Once the occupant’s comfort preference is pro-
vided, the smart application constructs a discomfort function
for the occupant. It takes part (on behalf of the occupant) in the
consensus algorithm that the Building Thermal Management
System (BTMS) runs by providing a temperature set-point
(xij), in response to the BTMSs choice of penalty factor signal
(pij) and preferred zonal temperature (zj). Thus the consensus
algorithm runs through iterative (back-and-forth) communica-
tion between the BTMS and the smart applications associated
with the individual occupants. Note that the occupant is not
directly involved in this iterative process. The occupant is only
involved when it wants to provide additional input or update
its comfort preferences (which could simply be in the form of
hot/cold feedback, or a comfortable temperature range), which
is used by the smart application associated with the occupant to
recompute discomfort function of the occupant. The occupants
(humans) themselves are not required to perform any compu-
tational task or take part in iterative communication with the
BTMS. Also, the occupants are not required to re-enter their
preferences even when there is a change in occupancy (users
move in/out) or ambient conditions, unless they actually want
to change their preference. The algorithm would automatically
compute the adjusted optimal set-points based on changes in
occupancy and environmental conditions.

Note that the smart application could also be residing in
a central server (maintained by the BTMS) as well. In that
case, each iteration of the consensus algorithm would involve
communication between two processes (or servers) within the
BTMS, rather than the occupants smart phone and the BTMS.

Upon convergence of the distributed consensus algorithm
(which we establish later in the paper), let x∗, z∗ and p∗

respectively denote the (vectors of) occupant temperature
choices, zonal target temperatures, and penalty factor signals.
Then we desire that x∗, z∗, p∗ satisfy the following properties:
• (Individual Rationality) Each occupant agent (smart ap-

plication associated with an individual occupant) chooses
its desired temperature so as to minimize its total cost
function, represented as the sum of its discomfort plus
the energy price paid to the building operator (considering
penalty factor as equivalent to pricing per unit tempera-
ture change for the occupant):

x∗ij = arg min
xij

{Di(xij) + pij(xij − zj)} .

• (Consensus) For each zone, the temperature choices of
the occupant agents of the zone agree with each other,
and with the target zone temperature set by the BTMS:

x∗ij = z∗j , ∀i ∈ Sj .

• (Optimality) The target zone temperatures minimize the
aggregate occupant discomfort plus the building energy

cost, given by (1):

z∗ = arg min
z

m∑
j=1

∑
i∈Sj

Di(zj) + E(g(z)).

It is easy to argue that such a solution (x∗, z∗, p∗) - one
that satisfies the above three properties - exists. Note how-
ever that for general convex discomfort functions Di, the
x∗ij that satisfies the individual rationality property may
be non-unique. In this paper, we make the reasonable as-
sumption that while the discomfort functions are convex,
they are not necessarily strictly convex. For example, each
occupant may have a “comfortable” temperature range,
over which the discomfort function is essentially flat, i.e.,
the occupant is insensitive to temperature changes within
that range. Despite this non-uniqueness of the optimal z∗

(and therefore the non-uniqueness of the optimal solution
(x∗, z∗, p∗)), the distributed consensus algorithm that we
describe next ensures that the system converges to one of
the optimal solutions.

C. Distributed Consensus Algorithm

To develop the consensus algorithm, we re-write the min-
imization objective in (1) in terms of the zonal temperature
choices of the occupants and the BTMS, as:

minimize
m∑
j=1

∑
i∈Sj

Di(xij) +G(z)

subject to xij = zj , i ∈ Sj (3)

where function G(z) = E
(
g(z)

)
represents the total energy

cost in terms of the target zonal temperature vector z.
We can now solve (3) through the ADMM approach as

described in [32]. The ADMM approach blends the decompos-
ability of dual ascent with the superior convergence properties
of the method of multipliers, to develop an algorithm that is
amenable to distributed implementation, and also has good
convergence properties.

To motivate the ADMM based consensus algorithm, let us
consider the augmented Lagrangian:

Lρ(x, z, p, ρ) =

m∑
j=1

∑
i∈Sj

(
Di(xij) + pij(xij − zj) +

(ρ/2)|xij − zj |2
)

+G(z) (4)

where pij (penalty factor) is the dual variable, ρ > 0 is a
constant. The ADMM based consensus algorithm can then
be derived as iterations of coordinate-wise optimization of
this augmented Lagrangian along each xij and z directions,
followed by update of the dual variable in a gradient direc-
tion. More precisely, in our consensus algorithm, in iteration
k = 1, 2, . . ., the variable vector z, and the variables xij , pij
for all i ∈ Sj , j = 1, . . .m, are updated as follows:

xk+1
ij := argmin

xij

(
Di(xij) + pkijxij + (ρ/2)|xij − zkj |2

)
(5)
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zk+1 : = argmin
z

(
G(z) +

m∑
j=1

(
−
∑
i∈Sj

pkijzj

+
∑
i∈Sj

(ρ/2)|xk+1
ij − zj |2

))
(6)

pk+1
ij := pkij + ρ(xk+1

ij − zk+1
j ) (7)

The above set of update equations has a nice game theoretic
(price-driven rational-response) interpretation, as follows. The
BTMS iteratively communicates to each occupant i in any
zone j two parameters, pij and zj , based on which the
occupant’s cost (price paid) for a chosen temperature set-point
xij would be computed as pijxij+(ρ/2)|xij−zj |2. A rational
occupant then chooses its personal temperature preference xij
to minimize their individual cost function:

minimize Di(xij) + pijxij + (ρ/2)|xij − zj |2. (8)

The BTMS, acting on behalf of the building operator, would
choose the target building temperature vector z so as to
minimize

minimize G(z)−
m∑
j=1

∑
i∈Sj

pijzj +

m∑
j=1

∑
i∈Sj

(ρ/2)|xij − zj |2,

(9)
which on convergence (when consensus is attained) would
equate to the total energy cost incurred by the building
operator, when the payments made by the occupants are taken
into account. Finally, the penalty factor pij (equivalent of price
for per-unit temperature change) are updated in a way that
helps in the consensus, i.e., in bringing xij and zj close to
each other in each zone j, for each occupant i ∈ Sj .

In Section II-D we present a convergence proof for the
consensus algorithm described above, following the general
line of analysis on the convergence of the ADMM algorithm
as provided in [33].

It is worth noting here that in practice, it may take several
hundred iterations or more for the consensus algorithm to
converge, as we will see in the simulation results presented
later in the paper (Section IV). Involving humans to carry out
the task in (5) and communicating the temperature preference
to the BTMS would therefore lead to impractically long
convergence times. To implement the consensus algorithm in
practice, the user (occupant) could input its comfort range
(function) into a software agent (running on the user’s smart-
phone, or a PC in the user’s room/office); this user agent could
then be involved in the interactive communication with the
BTMS, and setting the temperature set-point preference (for a
given pricing signal) in the best interest of the individual user
(occupant).

D. Convergence Analysis of the Consensus Algorithm

The convergence proof presented in this section assumes
that the functions D(.) and G(.) are closed, proper, and
convex, and the UN augmented Lagrangian Lo in (10) below
has a saddle point.

Lo(x, z, p) =

m∑
j=1

∑
i∈Sj

(
Di(xij)+pij(xij−zj)

)
+G(z). (10)

Based on these assumptions we establish the objective conver-
gence, the residual convergence, and the convergence of the
dual variables, for our consensus algorithm as described in
Section II-C. In doing so, we utilize the convergence analysis
of the ADMM approach as described in [33], suitably adapted
to our model. Consider the objective,

O∗ = minimum
m∑
j=1

∑
i∈Sj

Di(xij) +G(z)

=

m∑
j=1

∑
i∈Sj

Di(x
∗
ij) +G(z∗), (11)

where x∗ij and z∗ denote the corresponding optimal values of
temperature choices. Note that for any zone j, x∗ij = z∗j for
all i ∈ Sj . Also, define residual for zone j as:

rij = xij − zj (12)

We prove our result through a sequence of lemmas, each
involving an inequality (refer to appendix for complete proof
of the lemmas).

Lemma 1.

O∗ −Ok+1 ≤
m∑
j=1

∑
i∈Sj

p∗ijr
k+1
ij . (13)

Lemma 2.

Ok+1 −O∗ ≤ −
m∑
j=1

∑
i∈Sj

(
pk+1
ij rk+1

ij

+ρ(zk+1
j − zkj )(−rk+1

ij − (zk+1
j − z∗j ))

)
.

(14)

Next, define Lyapunov function V for the ADMM algorithm
as:

V k = (1/ρ)

m∑
j=1

∑
i∈Sj

|pkij − p∗ij |2 + ρ

m∑
j=1

|zkj − z∗j |2 (15)

This Lyapunov function satisfies the inequality as stated in the
lemma below.

Lemma 3.

V k+1 ≤ V k − ρ
m∑
j=1

∑
i∈Sj

|rk+1
ij |

2 − ρ
m∑
j=1

|zk+1
j − zkj |2 (16)

Now, since V k ≤ V 0, pkij and zkj are bounded. Iterating
(16) gives:

ρ

∞∑
k=0

(
(rk+1
ij )2 + |zk+1

j − zkj |2
)
≤ V 0, (17)

which implies rkij → 0 and |zk+1
j − zkj | → 0 as k →∞. Fur-

ther, from inequalities (13) and (14) we have limk→∞Ok =
O∗ or the objective convergence.

Hence, the inequalities (13), (14) and (16) implies the
convergence of our algorithm.
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E. Profit Analysis for the Building Operator

For this analysis we consider the penalty factor p∗ as equiv-
alent to optimal pricing for per unit change of temperature.
Let the vector y∗ denote the optimal zonal temperatures. Note
that the pricing feedback signals pij’s naturally reflect the
marginal energy cost saved by the occupants (users). It is
easy to establish that the optimal pricing feedback signal p∗ij
satisfies:

p∗ij = −D′i(y∗j ). (18)

We can further show that,∑
i∈Sj

p∗ij =
∂G(y∗)

∂yj
. (19)

Now, we can obtain an expression for the difference of
the net revenue from occupants and the operational cost of
maintaining the building at the consensus temperature set-
point. Note, that this expression represents the operational
profit of the building operator and is given by:∑

j

∑
i∈Sj

p∗ij(y
∗
j − T̂∞)− (G(y∗)−G(T̂∞)), (20)

where T̂∞ is a vector of size m of T∞ values. Using Taylor
series:

G(T̂∞) = G(y∗) + (T̂∞ − y∗)T∇G(y∗)

+
1

2
(T̂∞ − y∗)T∇2(y∗)(T̂∞ − y∗), (21)

the building operator’s profit can be further expressed as:

1

2
(T̂∞ − y∗)T∇2(y∗)(T̂∞ − y∗). (22)

Since G(y) is convex in y, ∇2(y∗) ≥ 0, and (22) is upper
bounded by ≤ λmax

2 ||y
∗−T̂∞||2, where λmax is the maximum

eigenvalue of ∇2(y∗). From (22) we can assert that if the
penalty factor signals were to be translated to real money (or
equivalent credit) transaction between the building operator
and the occupants, the building operator does not lose money,
and instead may end up making a small profit that is bounded
by the convexity of the energy cost function G(y). The
expression in (22) equals zero (= 0) when G(y) is affine
in y. Therefore, when G(y) is affine in y, perfect budget
balance is attained, i.e. payments (credits) of the users are just
redistributed between themselves, and the building operator
does not make any profit or loss.

III. APPLICATION TO RC MODEL

The consensus algorithm and its convergence, proposed in
this work, does not depend on the thermal model of the
building so much. Only assumption needed is the convexity
of energy cost function E(u). In this section we use the
widely popular RC model just for the sake of definiteness, in
expressing our control law and for the purpose of simulations.
The results can be extended to other models as well. We
present an RC model of a building (Section III-A) and then
develop an adaptive control law (Section III-B) for simulation
purpose on the model.

A. Building Heat Transfer Model
Multiple building modeling strategies have been proposed

in the literature, which include the finite element method based
model [23], lumped mass and energy transfer model [24],
and graph theoretic model based on electrical circuit analogy
[25], [26], [27], [28], [29]. For the purpose of simulating our
algorithm we take this electrical circuit analogy approach, and
combine it with the distributed consensus algorithm to achieve
collaborative temperature control of buildings. A building
is modeled as a collection of interconnected zones, with
energy/temperature dynamics evolving according to a lumped
heat transfer model. In the lumped heat transfer model, a single
zone is modeled as a thermal capacitor and a wall is modeled
as an RC network. This results in the standard lumped 4R3C
wall model [26].

The heat flow and thermal capacitance model can be written
for all the thermal capacitors in the system, with Ti as the
temperature of the ith capacitor. Consider the system to have n
thermal capacitors and l thermal resistors. Taking the ambient
temperature (T∞) into account, and neglecting any “thermal
noise” in the system, we can write the overall heat transfer
model of the system with m zones as [10]:

CṪ = −DR−1DTT +B0T∞ +Bu (23)

where T ∈ Rn is the temperature vector (representing the
temperature of the thermal capacitors in the model), u ∈ Rm
is the vector of heat inputs into the different zones of the
building, and B ∈ Rn×m is the corresponding input matrix.
Also, note that (T, u) are functions of time (T (t), u(t)) and
accordingly Ṫ = dT

dt . Note that positive values of u correspond
to heating the system while negative values of u correspond
to cooling. In the above equation, C ∈ Rn×n consists of the
wall capacitances and is a diagonal positive definite matrix; R
∈ Rl×l consists of the thermal resistors in the system and is a
diagonal positive definite matrix as well. Also, D ∈ Rn×l is
the incidence matrix, mapping the system capacitances to the
resistors, and is of full row rank [31], and B0 = −DR−1dT0
∈ Rn is a column vector with non-zero elements denoting the
thermal conductances of nodes connected to the ambient.

In our model, the zones are picked such that each of them
has a heating/cooling unit, which in turn implies that B is of
full row rank. Also, since matrix D is of full row rank the
product DR−1DT is a positive definite matrix. The vector of
zone temperatures, denoted by y (which is a function of T )
can be expressed as,

y = BTT. (24)

B. Control Law Design
The ADMM algorithm generates consensus among the

building occupants and the BTMS, and converges to the
minimum cost temperature vector z∗ for the building. The
objective of the control law design is then to drive all the zones
in system (23) to their corresponding consensus temperature
z∗j in steady state. Using the steady state condition we can
obtain the steady state temperature yss and the corresponding
steady state input uss as

uss = g(yss) (25)
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Using (24) and the steady state condition in (23) (i.e., setting
Ṫ = 0), the steady state mapping can be further expressed in
terms of model parameters as:

uss = g(yss)
.
= (BTA−1B)−1(yss −BTA−1B0T∞), (26)

where A = DR−1DT . We add a passive feedback component
to design the control law as:

u = uss −K(y − z∗), (27)

and present the corresponding simulation results in Section
IV-B and IV-C.

To further remove the model dependency from the control
input and incorporate time varying conditions we use the
passive controller with adaptive feed forward from [30] (with
z∗ replacing the ydes):

u = F̄0z
∗ + F̄1T∞ −K(y − z∗)

˙̄F0 = −Γ0(y − z∗)z∗T

˙̄F1 = −Γ1(y − z∗)T∞

(28)

where Γ0 and Γ1 are both > 0, and present the result in Section
IV-D. Though model information is not used in this inner loop
temperature controller, the steady state model (26) is needed
to solve for z∗ in the outer optimization loop.

IV. SIMULATIONS

In this section we present simulation results of our proposed
algorithms. We also present a sensitivity study (Section IV-E)
of our algorithm with respect to modeling error in RC
parameters.

A. Simulation Runs

For the purpose of simulation we consider our six zone
experimental facility located in Watervliet, NY. The experi-
mental facility dimensions are as per Figure 3 that has been
generated using the BRCM toolbox [34]. For this example
model of six zones, the BRCM toolbox generates a total
of 31 building elements resulting in a total of 93 capacitive
elements. We use the resistance and capacitance matrices as
generated by the BRCM toolbox, volumetric heat capacity
values and thermal resistance values as per [10] to simulate
the temperature dynamics of our linear model in equation
(23). Using this information we simulate the model with
ambient temperature at T∞ = 18◦C. However, it should be
noted that the algorithm successfully converges with a wide
range of ambient conditions. The presented value of T∞ was
chosen as it offers interesting perspective into the convergence
and penalty factor signals corresponding to the preferences
of occupants and building operator. The occupancy of the
building is as depicted in Figure 4. Zones 1 and 6 are occupied
by two occupants each and the other inhabitable zones 3, 4
and 5 have one occupant each. All the occupants have their
own specific temperature preference.

The first step in the problem simulation is obtaining the
consensus temperature for each zone. We capture the tem-
perature preferences of the occupant of each zone and the
corresponding temperature preference of the building operator

Fig. 3. Test bed with the building elements as generated by the BRCM
Toolbox.

Fig. 4. Test bed layout with occupancy.

for the zones in Table I. Based on the PMV-PPD model [14],
[15] we start with a quadratic occupant discomfort function of
the form: β(yj−αij)2, where yj is the temperature of the zone
j and αij is the ideally preferred temperature of the occupant i
in zone j as captured in Table I. Note that the convex quadratic
thermal discomfort function of an occupant can be defined
uniquely using the preferred temperature point (αij) and the
curvature of the quadratic function (β). As and when an
occupant indicates a change in the preferred temperature, their
thermal discomfort function changes accordingly. In this work
we have considered thermal discomfort function with constant
curvature β. However, it can be extended to include functions
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where β can differ across occupants, or the discomfort function
is modeled as a more general (complex) convex function.

TABLE I
IDEAL TEMPERATURE SETTING IN ◦C OF EACH ZONE AS PER ITS

OCCUPANT AND THE BUILDING OPERATOR

Zone Occupant(s)
pref

Building Operator pref

Zone 1 18.5 & 19◦C 15◦C
Zone 3 20◦C 15◦C
Zone 4 21◦C 15◦C
Zone 5 22◦C 15◦C
Zone 6 22.5 & 23◦C 15◦C

In Figure 5 we present the result of the distributed consensus
algorithm using ADMM approach. Each zone (room) occupant
agent starts with the ideally preferred temperature set-point
of the corresponding occupant as per Table I and the BTMS
with the preferred set-point of the building operator for the
corresponding zones.

Each iteration in Figure 5 represents one round of com-
munication (computation) between (at) the smart applications
and the BTMS. So 100 iterations would represent 100 round-
trip communication (100 computation) rounds, and typically
evaluate to a few seconds. The occupant at their end would
only see the final (converged) temperature and penalty factor
signal, the intermediate values being internal to the algorithm
would not be visible to the occupants.

With each iteration of the algorithm, the difference between
the corresponding zonal temperature preference of the occu-
pant and that of the BTMS narrows and finally compromise
is attained in all the zones. Note that in Figure 5 the con-
sensus temperature of zone 6 comes down to that of zone 5,
irrespective of the zone 6 occupants preferring much higher
temperature than the occupant of zone 5. This is in accordance
with the energy cost attributed to maintaining zone 6 relative
to zone 5. The trend can also be reasoned from the penalty
factor curve in Figure 6, as the penalty factor feedback to zone
6 occupants is much higher compared to the occupant of zone
5. Further, the consensus temperature for both the occupants
of zone 1 and zone 6 converge to the respective consensus
zonal temperature.

The penalty factor for unit change in temperature varies with
each iteration, as shown in Figure 6. The penalty factor in-
creases for the zone occupant if the temperature choice is away
from the BTMS’ preference and the ambient temperature. In
Figure 6 the per-unit penalty factor for occupant 1 (located in
zone 1) turns negative. This can be attributed to the fact that
on consensus, the temperature for that zone moves away from
the ambient and building operator’s preferred temperature for
the zone, even beyond the occupant’s preferred value.

The penalty factor signals in the form of notifica-
tions/information can serve as a means for the building oper-
ator to communicate with rational occupants into selecting a
lower/higher preferred temperature. An occupant of a particu-
lar zone might not be aware of their zone’s thermal correlation
and the temperature preference of the occupants of their
neighboring zones. However, the building operator based on
the energy cost data can share that picture with the occupants,
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Fig. 5. Convergence of temperature set-point preferences in each zone, for
the occupants and the BTMS. The solid lines depict the occupant temperature
preferences, and the dashed ones the BTMS’ corresponding preferences.

through penalty factor signal, without disclosing any private
information. Using this information, rational occupants and the
building operator can work together to modify their preference
and accommodate users with different and at times extreme
(which in general incurs greater overall operating energy cost
to the building) thermal preferences.
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Fig. 6. Variation in penalty factor for the zone occupants for desired change in
the zonal temperatures. A negative penalty factor indicates the corresponding
occupant receiving reward from the building operator.

B. Uninterrupted user occupancy

Next we use the consensus temperature of the zones as the
target temperatures in the building dynamics model in (23)
to simulate the temperature variation of the building for a
48 hour period. We present our simulation results with the
control law proposed in (27). The corresponding temperature
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dynamics for a 48 hour period is presented for the six zone
model in Figure 7. The temperature of each zone converges
to the corresponding component of the consensus temperature
vector z∗, as can be observed in the figure.
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Fig. 7. Temperature dynamics of the six zone model for a 48 hour period
with the proportional feedback and model based feed forward controller input.

C. Scheduled user occupancy

However, the uninterrupted occupancy of users presented
in the results so far is not a real world scenario as the
occupants would be moving in and out. In the next set
of simulation results in Figures 8 and 9, we present the
temperature dynamics with a real world working environment
schedule. The occupants of each room/zone walk-in at 7 am
on day 1 (start of the simulation), take an hour long lunch
break at 12 pm and leave for the day at 5 pm The following
day the occupants get in at 8 am, take the lunch break at noon
and leave at 5 pm. When the zones are unoccupied we go into
an energy saving mode during which the zonal temperatures
start sliding to the ambient temperature. The occupancy of the
zones can be obtained through an online occupancy sensor or
can be an offline system scheduler.
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Fig. 8. Temperature dynamics of the six zone model for a 48 hour period,
with real-world user occupancy schedule.

The corresponding heat input variation is presented in Fig-
ure 9. The short duration burst of high heat inputs correspond
to the occupants returning from a break (lunch or next day
morning), ensuring fast convergence to the optimum tempera-
tures when the rooms get re-occupied. When the temperatures
get close to the desired values, then a much lower heat input
(closer to the steady state value) suffices.
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Fig. 9. Heat input variation of the six zone model for a 48 hour period, with
real-world user occupancy scheduling.

D. Adaptive Controller with time varying T∞

So far we have presented simulation results with our model
based feed forward controller in (27) considering a fixed value
of T∞. Next we consider a time-varying ambient temperature
of the form T∞ = 18◦C + 5◦Csin(2πt/T ), with T = 24hr.
The model based feed forward controller cannot adapt to the
time varying T∞ as can be seen in Figure 10. We next use the
adaptive feed forward controller as proposed in (28) with time
varying T∞. Convergence of the temperature for each zone is
obtained as can be seen in Figure 11. The zonal temperature
no longer fluctuates with T∞ as the control input in Figure 12
is out of phase with T∞.
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Fig. 10. Zonal temperature dynamics for time varying sinusoidal T∞ with
the model based feed forward controller.
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Fig. 11. Zonal temperature dynamics for time varying sinusoidal T∞ with
the adaptive feed forward controller.
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Fig. 12. Heat input into the zones corresponding to adaptive feed forward
controller for time varying sinusoidal T∞.

E. Sensitivity Analysis

The adaptive feed forward controller and the consensus
algorithm is fairly model independent. However, for this study
we relied on RC model parameters for the energy cost
function G(z). In this section we present results on sensitivity
of the consensus algorithm to the percentage error in the
modeling parameters of the test facility. We run Monte Carlo
simulation with 1000 iterations each for 1% to 10% randomly
induced error. Figures 13 and 14 show the results for 1% and
10% induced error respectively. In figure 15 we present the
error bar graph with increasing percentage error. Simulation
data suggests that the algorithm is fairly robust to errors in
modeling. Next, we also simulate temperature dynamics for
the six zone model for the consensus temperature obtained
with 10% modeling error. Figure 16 represents the results
and establishes that the consensus temperatures with modeling
error can also be successfully achieved.

V. CONCLUSION

In this work, we have proposed an approach for collabo-
rative temperature control in multi-occupant spaces, that uses
pricing feedback to attain a consensus between the rational
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Fig. 13. Monte Carlo simulation with 1000 iterations and 1% error in model.
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Fig. 14. Monte Carlo simulation with 1000 iterations and 10% error in model.

occupants (interested in minimizing their individual discomfort
plus energy cost) and the building operator (thermal man-
agement system). Upon convergence, the consensus algorithm
attains temperature set-points that minimize the sum of the
aggregate discomfort of the occupants and the total energy
cost in the building. The temperature set-points attained on
consensus is then used by a control law with proportional
feedback and an adaptive feed forward component, to drive
the building to the desired (optimal) temperature. Through
simulations, we have demonstrated the convergence of the
consensus algorithm, as well as the control law, to the desired
(optimal) temperatures. We have further included a study
on the sensitivity of the algorithm to potential errors in the
estimation of model parameters. This establishes robustness
of our algorithm to modeling and estimation errors.

APPENDIX

A. Proof of Lemma 1

Since Lo has a saddle point:

Lo(x
∗
ij , p

∗
ij , z

∗
j ) ≤ Lo(xk+1

ij , p∗ij , z
k+1
j ) (29)
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Fig. 15. Monte Carlo simulation error bar graph for 1% to 10% modeling
error. Error bar represents standard deviation of the values.
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Fig. 16. Temperature dynamics for consensus zonal temperatures obtained
with 10% modeling error.

Since, the constraint is satisfied at optimality:

x∗ij = z∗j =⇒ Lo(x
∗
ij , p

∗
ij , z

∗
j ) = O∗ (30)

Also,

Lo(x
k+1
ij , p∗ij , z

k+1
j ) =

m∑
j=1

∑
i∈Sj

Di(x
k+1
ij ) +G(zk+1)

+

m∑
j=1

∑
i∈Sj

p∗ij(x
k+1
ij − zk+1

j )

= Ok+1 +

m∑
j=1

∑
i∈Sj

p∗ijr
k+1
ij (31)

Hence,

O∗ ≤ Ok+1 +

m∑
j=1

∑
i∈Sj

p∗ijr
k+1
ij (32)

which completes the proof of inequality (13).

B. Proof of Lemma 2

From the augmented Lagrangian in (4) and re-writing the
update equation in (7) as:

pk+1
ij = pkij + ρrk+1

ij , (33)

it can be shown that xk+1
ij minimizes

Di(xij) + pk+1
ij xij + ρxij(z

k+1
j − zkj ), (34)

and similarly zk+1
j minimizes

G(z)− pk+1
ij zj . (35)

Hence,

Di(x
k+1
ij ) + pk+1

ij xk+1
ij + ρxk+1

ij (zk+1
j − zkj ) ≤

Di(x
∗
ij) + pk+1

ij x∗ij + ρx∗ij(z
k+1
j − zkj ), (36)

and
G(zk+1)− pk+1

ij zk+1
j ≤ G(z∗)− pk+1

ij z∗j . (37)

Adding (36) and (37) across all zones and all occupants, and
re-arranging we obtain the inequality (14).

C. Proof of Lemma 3

Adding inequalities (13) and (14) and multiplying by 2 we
obtain:

m∑
j=1

∑
i∈Sj

(
2rk+1
ij (pk+1

ij − p∗ij) + 2ρrk+1
ij (zk+1

j − zkj )
)

+ 2ρ

m∑
j=1

(
(zk+1
j − zkj )(zk+1

j − z∗j )
)
≤ 0. (38)

Using update relation (33) in (38) and re-arranging terms we
can obtain:

(1/ρ)

m∑
j=1

∑
i∈Sj

(
(|pk+1

ij − p∗ij |2 − |pkij − p∗ij |2)

+ρ|rk+1
ij + (zk+1

j − zkj )|2
)

+ρ
∑
i∈Sj

(
((zk+1

j − z∗j )2 − (zkj − z∗j )2)
)
≤ 0. (39)

From the definition of Lyapunov function in (15) this gives:

V k+1 − V k + ρ

m∑
j=1

∑
i∈Sj

|rk+1
ij + (zk+1

j − zkj )|2 ≤ 0, (40)

which can be re-written as:

V k+1 ≤ V k − ρ
m∑
j=1

∑
i∈Sj

|rk+1
ij |

2 − ρ
m∑
j=1

|zk+1
j − zkj |2

−2ρ

m∑
j=1

∑
i∈Sj

rk+1
ij (zk+1

j − zkj ). (41)

The last term in (41) can be shown to be positive, which proves
the third inequality (16).
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