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Letters

Neural Networks—Then and Now

George Nagy

Abstract—McCulloch and Pitts are often credited with the first (1943)
mechanistic interpretation of the neuron doctrine. It was not until the
1960°s, however, that neural networks emerged as a significant sub-
discipline with attempts at application to engineering problems. Frank
Rosenblatt, a Cornell University psychologist, showed by mathemati-
cal analysis, digital computer simulation, and experiments with spe-
cial-purpose parallel analog systems that neural networks with vari-
able weight connections could be frained to classify spatial patterns into
prespecified categories. In his attempts to provide biologically plausi-
ble explanations of the function of the central nervous system, he in-
vestigated both relatively simple networks that were amenable to anal-
ysis and more complex networks whose behavior could be predicted
only in terms of gross characteristics. He built up a sizable group of
theoreticians, experimentalists, technologists, and, later, biologists. His
work caught the imagination of the press and led to a wave of febrile
activity that subsided at the end of that decade.

1. INTRODUCTION

The application of adaptive neural networks to pattern recogni-
tion, 30 years ago, caused considerable stir in the technical com-
munity. A number of conferences were organized and some firms
dedicated a significant share of their resources to the new technol-
ogy. Now that neural networks constitute a well-established field
of research, it is appropriate to look back and see just far we have
come. This retrospective is traced from the point of view of an
interested observer and is colored by the author’s own experience
as a graduate student (1960-1962) and postdoctoral research as-
sociate (1962-1963 and summer 1966) in the Cognitive Systems
Research Program of Cornell University.

The Cognitive Systems Research Program was established in
1959 by Dr. Frank Rosenblatt. His first widely circulated technical
report, which defined perceptron, was issued in 1957 under the
aegis of the Cornell Aeronautical Laboratory [1]. As he himself
ruefully admitted later, the term perceprron was a mistake: it sug-
gested an automaton rather than the wide class of models of the
central nervous system that he had intended. His main objective
was to demonstrate analytically and experimentally that adaptive
neural networks with a rich interconnectivity and synapselike non-
linearities could mimic many observed cognitive functions, and that
the existence of such structures did not conflict with the available
biological evidence. Rosenblatt’s ideas were influenced by Bul-
lock, Cahal, Clark and Farley, Culbertson, Eccles, Hayek, Kohler,
Holland, Hubel and Wiesel, Lettvin and Maturana, McCulloch and
Pitts, Milner, Penfield, Rashevsky, Rochester, Uttley and, perhaps
most, by Oliver Hebb [2].

In spite of his overriding concern with the mind/brain problem,
Rosenblatt was also interested in demonstrating the application of
his networks to spatial pattern recognition and to discrete and con-
tinuous speech recognition. His group (which grew to about 20
persons, many of whom are still active in related fields) pro-
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grammed an extensive and flexible simulator for the largest com-
puter of that time. Nets with over 20 000 connections were exer-
cised. The 1959-vintage Mark I alpha-perceptron is in the
Smithsonian Institution. New storage elements were developed for
Tobermory, a hybrid speech processor named after H. H. Mon-
roe’s (Saki) talking cat. A 1963 bibliography on perceptrons listed
98 publications {3].

Beginning in about 1964, Rosenblatt turned his attention to neu-
rotransmitters and genetic coding. In addition to his professional
interests, he was a skilled musician, an astronomer who built his
own observatory, and a mountain climber. He died in a sailing
accident in 1971 on his 43rd birthday.

II. PERCEPTRONS

Rosenblatt’s neural models are networks of three types of signal-
processing units: sensory (input) units, associative units (now called
hidden layers), and response (output) units. The output of each
node depends only on the sum of its input signals. The models are
classified according to the topology and type (fixed or variable-
weight) of the interconnections, and the functional characteristics
(linear, threshold, S-curve) of the nodes. The collection of all pos-
sible memory states, i.e., the configuration of values of the vari-
able-weight connections, constitutes the phase space of the net-
work. The coupling coefficients between all pairs of units are rep-
resented by a time-varying interaction matrix. A perceptron is then
defined as a network of S, A, and R units whose interaction matrix
depends only on the sequence of past activity states of the network
[4].

In terms of network topology, Rosenblatt differentiated between
series-coupled perceptrons (connections permitted only between
successive layers of processing units), cross-coupled perceptrons
(connections also between units in the same layer), and back-cou-
pled perceptrons (with feedback paths). He justified the fixed,
semirandom layer of connections between S units and A units on
the grounds of its well-established presence in biological visual and
auditory systems.

He also classified the rules governing the evolution of the inter-
action matrix through time. Monopolar reinforcement changes only
the weights to units whose output was strictly positive; bipolar re-
inforcement is not restricted. In alpha-system reinforcement, the
weights are changed by a constant value, while with the conser-
vative gamma-system, the total increment is kept to zero. Propor-
tional reinforcement systems were also investigated. Reinforce-
ment could be triggered only by certain stimuli, certain responses,
or, in error-correction mode, by a combination of both input and
output.

For series-coupled networks with binary inputs and a single layer
of variable weights, Rosenblatt and his colleagues (particularly H.
D. Block, Professor of Applied Mechanics and Mathematics at
Comell, who died in 1978) proved that if a dichotomy can be
achieved with any set of weights, the error-correcting alpha-rein-
forcement procedure will produce some set of solution weights after
a finite number of iterations. Dozens of different proofs of this per-
ceptron convergence theorem have been published, but all of the
bounds require knowledge of a solution vector. Nevertheless, the
procedure remains the most efficient test for linear separability. The
many attempts that have been made to improve the rate of conver-
gence by adjusting the order of presentation of input patterns and
the size of the increments have not yielded any guaranteed im-
provement.
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Rosenblatt proved the existence of universal perceptrons: a net-
work with one variable and one fixed layer of weights, with a large
enough set of A units, can be trained for any dichotomy. He under-
stood, however, that such machines have limited abilities to gen-
eralize to patterns similar to those in the training set. The fact that
nontrivial topological properties are beyond the reach of single-
layer machines was conclusively demonstrated in 1967 by Marvin
Minsky (Rosenblatt’s former schoolmate) and Seymour Papert in a
monograph that marked the end of the first halcyon era of neural
networks [5]. The current expanded edition of this influential text
contains an epilogue addressing some of the controversies that have
surrounded neural networks from the very beginning. Minsky’s own
1954 PhD. dissertation at Princeton University was titled *‘Neural
Nets and the Brain Model Problem’’ and many contemporary stu-
dents of artificial intelligence mistakenly credit him with the in-
vention of perceptrons.

Noting the accumulated experimental evidence that human per-
formance on coherent patterns was far superior to performance on
random patterns, Rosenblatt investigated configurations of connec-
tions that duplicated this phenomenon. He also showed that gen-
eralization over arbitrary groups of transformations, such as trans-
lation or rotation, not only can be wired in but also can be learned
by cross-coupled perceptrons from sequences of patterns with
equivalent classes in temporal proximity [6]. He derived some
equilibrium conditions for fully cross-coupled networks (now
known as Hopfield nets). He analyzed back-coupled systems where
the weights were changed depending on the activity of the nodes
at consecutive time intervals but was not able to derive a workable
reinforcement regime for series-coupled perceptrons with muitiple
layers of variable weights. Such regimes have since been devised,
but there is still no guarantee that they will obtain a solution if one
exists, in the sense that a single-layer system can.

Beginning in 1963, Rosenblatt turned his attention to explaining
how sequences of sensory experiences can be stored and recalled
over periods comparable to a human lifetime. His goal was to model
phenomena such as selective recall, retention of originally ‘‘un-
noticed”’ events, transient and permanent forgetting, recovery from
retrograde amnesia, and effects of localized lesions and electrical
stimulation in aphasia, agnosia, and related disorders. His model
consisted, in addition to the usual S units, cross-coupled A units,
and R units, of a clocking system with reinforceable weights to the
associative system. To recall a string of experiences starting with
an arbitrary event, the associative network would induce the state
corresponding to that event in the clocking network, which would
then cycle through a sequence of states, each of which would trig-
ger the corresponding event in the associative system. Recondite
mathematical analysis indicated that with a number of units com-
parable to the estimated number of neurons in the brain, very long
sequences could be accurately recalled [7]. However, no convinc-
ing simulation experiments were ever conducted.

III. SIMULATION AND HARDWARE

An elaborate perceptron simulation program for IBM 7090/94
systems was developed [8]. The command language allowed spec-
ification of families of complex random or deterministic networks,
the generation of elaborate stimulus (input pattern) sets, a variety
of training and testing procedures, flexible output reports, repeti-
tion of experiments for a range of parameters, signal-propagation
delays, and exponential decay over time of the weights (forger-
ting). Simulations were limited only by the available computer
memory (32K words). The simulator was used to optimize param-
eters in the application of neural networks to alphabetic character
recognition; particle tracks in bubble-chamber photographs; pho-
neme, isolated word, and continuous speech recognition; speaker
verification; and center-of-attention mechanisms for image pro-
cessing.

From the very beginning, Rosenblatt insisted on parallel, analog
implementations of his models for large-scale experiments. The

Mark 1 perceptron, built at the Cornell Aeronautical Laboratory in
1958, had a retina of 20 X 20 photocells (S units), 512 stepping
motors that controlled potentiometers (the weights of the A-R co-
nections), and eight R units [9]. Replaceable plug boards, similar
to those then used to ‘‘program’’ 1/0 devices, were used for the
S-A connections; each S unit could be connected to up to 40 A
units.

A number of faster analog storage devices were also investi-
gated. In all of these devices the output current or voltage was
proportional to their setting and could be summed in parallel using
some impedance element. The memistor, an electrochemical inte-
grating device, was developed by Bernard Widrow at Stanford Uni-
versity for adaptive pattern recognition and control systems.
Thermistors, photochromic devices, solions, and transpolarizers
were also considered. However, magnetic flux integration ap-
peared most promising. A number of magnetic storage devices with
stable and linear integrating characteristics, as well as new rein-
forcement procedures, were developed by Charles Rosen and his
group at the Stanford Research Institute. Rosenblatt collaborated
closely with this group (which included Ted Brain, George Forsen,
Richard Duda, and Nils Nilsson), with other groups at Astropower
(R. D. Joseph, P. M. Kelly, and S. S. Viglione) and Aeronutronics
(J. K. Hawkins and C. J. Munsy), and with scientists and engineers
in Germany and the Soviet Union.

The four-layer Tobermory perceptron, designed and built at Cor-
nell University between 1961 and 1967, had 45 S units, 1600 A1l
units, 1000 A2 units, and 12 R units. Intended for speech recog-
nition, the input section consisted of 45 band-pass filters attached
to 80 difference detectors, with the output of each detector sampled
at 20 time intervals. Its 12 000 weights consisted of toroidal cores
capable of storing over 100 different amplitudes. Each A2 unit could
be connected to any of 20 Al units by means of a wall-sized plug-
board. As has happened with so many other projects in the last
three decades, by the time Tobermory was completed, the tech-
nology of commercial Von Neumann computers had advanced suf-
ficiently to outperform the special-purpose parallel hardware.

IV. BioLoGY

In the mid-1960’s Rosenblatt’s interest shifted to the biological
basis of learning. He attempted to duplicate with maze-trained rats
the reported transfer of learning in worms by means of homoge-
nized brain extracts. He also supervised a number of Ph.D. stu-
dents who investigated the role of DNA in memory.

V. CONCLUSIONS

Inspired partly by Rosenblatt’s results (many of which were sen-
sationalized by the media), large companies established groups
dedicated to applying neural networks to practical problem do-
mains. A number of small start-up companies also set their sights
in that direction. There was considerable interest from the military:
the Cognitive Systems Research Program was generously funded
by the Office of Naval Research. Expectations were high, and hy-
perbole on self-organizing systems, including those modeled on
genetic evolution, abounded. A number of large hardware devel-
opment projects were undertaken in the hope that the few remain-
ing bugs in the learning mechanisms would be ironed out by the
time they were completed.

The author cannot help but view the recent buildup of enthusi-
asm with pleasure and some nostalgia, but also with trepidation
that past excessive expectations will again be raised, and again dis-
appointed. As Santayana reminds us, ““Those who cannot remem-
ber the past are condemned to repeat it."’
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East Lansing, MI:

Adaptive Nearest Neighbor Pattern Classification

Shlomo Geva and Joaquin Sitte

Abstract—We describe a variant of nearest neighbor pattern classi-
fication (NN) [1] and supervised learning by learning vector quanti-
zation (LVQ) [2], [3]. The d surface ping method, which we
call DSM, is a fast supervised learning algorithm, and is a member of
the LVQ family of algorithms: A relatively small number of prototypes
are selected from a training set of correctly classified samples. The
training set is then used to adapt these prototypes to map the decision
surface separating the classes. This algorithm is compared with NN
pattern classification, learning vector quantization (LVQ1) [2], and a
two-layer perceptron trained by error backpropagation [4]. When the
class boundaries are sharply defined (i.e., no classification error in the
training set) the DSM algorithm outperforms these methods with re-
spect to error rates, learning rates, and the number of prototypes re-
quired to describe class boundaries.

I. INTRODUCTION

The nearest neighbor (NN) method assigns an unclassified sam-
ple vector to the class of the nearest of a set of correctly classified
prototypes, or codebook vectors. Cover and Hart have shown that
in a large sample, the error of this rule is bounded above by twice
the Bayes probability of error [1].

Learning vector quantization (LVQ1, LVQ2, LVQ2.1, and
LVQ3), described by Kohonen [21, [3], is a nearest neighbor clas-
sification method in which a fixed number of prototype vectors are
progressively modified to cover the input space. The LVQ family
of algorithms is concerned with optimal placement of these proto-
types, so as to reflect the probability distribution of the training
samples. The adaptive decision surface mapping (DSM) algorithm
is a variation of the LVQ method, but we have dropped the require-
ment that the prototypes reflect the probability distribution of the
classes. Instead, the algorithm adapts the prototype vectors to
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closely map the decision surface separating classes. DSM is de-
scribed in detail in the next section. In Section III we present com-
parative results for three classification problems, which indicate a
drastic performance improvement over the LVQ and backpropa-
gation.

II. ADAPTIVE DECISION SURFACE MAPPING

The DSM algorithm starts by selecting a small subset of proto-
types from the training set. The initial prototypes are selected at
random. We have found that good results are obtained when the
proportion of prototypes from each class in the initial subset
matches the a priori probabilities of the classes, and it is indeed
the procedure commonly followed with LVQ. This information is
usually available in the training set, when random sampling is used,
or may have to be provided externally if the training set does not
reflect the a priori probabilities of the classes.

In the learning stage, the training set is used to modify the pro-
totypes in order to gradually adapt the decision surface they define
to that defined by the entire training set and reduce the classifica-
tion error rate. Samples from the training set are cyclically or ran-
domly presented for classification. When a training sample is cor-
rectly classified, that is, the training sample is of the same class as
the nearest prototype, no modifications are applied. When misclas-
sification occurs, modifications take place to apply both punish-
ment and reward.

The punishment step takes the nearest neighbor prototype, which,
in this case, is of the wrong class, and moves it away from the
training sample, along the line connecting the two vectors

Fi(e + 1) = (1) — a([E(0) - A0)]. (1)

The reward step searches for the nearest correct prototype and
moves it towards the training sample, along the line connecting the
two vectors

it + 1) = #c(t) + a(t)[¥ (1) — Ac(1)]. (2)

The term « is a scalar gain factor, monotonically decreasing with
time. For the cases discussed below, we have found that very good
results are obtained when « starts from a value of 0.3 or less, and
linearly decreases to 0, at a rate consistent with the desired training
limit (number of presentations). The algorithm is not very sensitive
to initial values of a, but if alpha starts too small, training takes
longer.

In the earlier stages of the training process « is relatively large;
therefore the process is allowed to rapidly modify prototypes to
remove large classification errors caused by the initial conditions.
In later stages, as « decreases, a more refined adaptation takes place
to correct smaller classification errors or to arrive at a compromise
configuration where errors are minimized.

The algorithm modifies prototypes only on misclassification, and
since errors are more likely to occur with samples near class bound-
aries, it rearranges prototypes, in pairs, on each side of a class
boundary, to correct or at least reduce the magnitude of these er-
rors.

It is possible that a configuration eliminating all classification
errors on the training set could be arrived at before a reaches a
value of 0. In that instance training is complete.

DSM is different from all the variants of LVQ. In LVQ1 modi-
fications are applied at each presentation, either to punish an in-
correct classification or to reward a correct one. LVQ2 modifies
the nearest and next-to-nearest neighbors whenever the nearest
neighbor is of a different class, and the next nearest neighbor is of
the same class, as the training sample. Furthermore, LVQ2 re-
quires the training vector to fall within a window which is deter-
mined by the relative distances of the training sample from the pro-
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