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Abstract

Independent decisions by two high performance
nearest-neighbour hand-printed digit classifiers are
combined in a principled manner. Three combina-
tion methods are investigated: Bayesian combination,
Dempster-Shafer evidential reasoning, and dynamic
classifier selection. On a test set of 60,000 hand-
printed digits, dynamic classifier seleclion performs
slightly better than Bayesian or Dempster-Shafer ev-
idential reasoning, but the lowest error rate is ob-
tained by K-nearest-neighbour combination. Single-
parameter classifier combination is used to generate
error-reject curves. Essentially error-free classifica-
tion is obtained at the cost of 4% rejects! The zero-
reject error rate decreases from 1.18% for the best sin-
gle classifier system 10 0.67% for the combined classi-

fier.

1 Introduction

In pattern recognition, the optimal decision regard-
ing the identity of an unknown pattern is given by
Bayes’ Rule. Unfortunately, Bayes’ Rule requires com-
plete knowledge of the class probability densities for
the entire pattern space. Without such knowledge,
the nearest-neighbour rule is generally regarded as the
best classifier, with an asymptotic error rate less than
twice the Bayes rate. Nearest neighbour (NN) clas-
sifiers are now practical [4] due to the availability of
pruning algorithms, search optimization, and the ad-
vent of computers with sufficient memory and process-
ing speed. As a result, the dominant factor limiting
recognition accuracy is no longer the choice of classi-
fier, but rather the choice of features.

The combination of two or more classifiers - based
on different features - can compensate for the inade-
quacies of a monolithic system {13] [16]. Indeed, the
error profiles produced by different classifiers can be
quite distinct. Errors in the overlapping portion of
the error profile are difficult, but not necessarily im-
possible, to correct. One strategy for combining multi-
ple sources of category information is to integrate the
classifier information directly and determine the cate-
gory with the highest aggregate score. An alternative
strategy is to explicitly determine the classifier most
likely to produce the correct decision. The source of
category information may be in the form of distances,
probabilities [15] [9] [14], confusion matrices, or rank
ordering [16] [10}.
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We perform large scale experiments using hand-
printed digits written by 500 writers not used dur-
ing training. The outputs of two high performance
NN classifiers are combined using Bayesian combina-
tion, Dempster-Shafer evidential reasoning, and dy-
namic classifier selection.

2 Nearest Neighbour Classification

Introduced in 1967 [7], the nearest-neighbour (NN)
rule assigns the label of the nearest pattern in the
reference set to the unknown pattern. Let z; € 2 be a
labelled reference pattern, selected from the reference
set X = {z;}M,, where M is the number of reference
patterns, and ) is the pattern space. Let y € Q be
the unknown pattern. Then the nearest neighbour of
y, denoted znp, is

Tpn = arg mingex d(z,y),

where d(-) is a distance measure. The label of z,, is
assigned to y.

We consider two different feature sets: tangents
uniformly sampled on the character contour {2}, and
Zernike moments P 1]. In [4], we observed that ap-
proximately half of the NN classification errors using
tangents were correctly recognized when Zernike mo-
ments were used.

Pruning removes superfluous patterns from the ref-
erence set, specifically those patterns which do not
affect the NN decision boundaries [1] [8]. In [4], prun-
ing reduced the reference set of 118,000 hand-printed
characters by 80% for contour tangents and by 76% for
Zernike moments, with a tolerable loss of recognition
accuracy of 0.07%.

Search optimization [3] discards patterns which
cannot be the nearest neighbour. Let p; be a refer-
ence pattern, a be a fixed anchor point, and z an un-
known pattern. By the triangle inequality, d(p;i, a) <
d(z,a) + d(pi, z), and d(pi,a) > d(z,a) — d(p;, z). If
another reference pattern, p;, is nearer to z than p;,
then d(p;, ) < d(pi, z) which implies

d(pj!a) < d(l’, a) + d(p,', J’,‘)

and
d(p;j,a) > d(z,a) — d(pi, z).

Any p; not satisfying these conditions is discarded.



K | Substitutions | Rejections
1 0.196 % 352%
2 0.060 % 6.98%
3 0.038 % 10.36 %
4 0.022% 13.86 %

Table 1: Rejection Criterion.

This optimization method is computationally effi-
cient, since we can precompute d(p;,a), and quickly
eliminate a large portion of the reference set. More
substantial search improvements can be realized us-
ing several anchor points, determined using a Koho-
nen associative memory [5] as a vector quantizer. The
average number of distance computations is reduced
from 24,648 to 375. Search optimization and pruning
improved the NN query time by a factor of 80.

Rejection Criterion. Improvements in recognition
accuracy are possible at the expense of rejection er-
rors. Certain applications require extremely low sub-
stitution errors, but tolerate significant rejection rates.
We use the following rule: If the K-nearest neighbours
for both classifiers are of the same class, then the re-
sult is accepted, otherwise the paltern is rejected. For
suitable values of K, very low substitution rates can
be achieved in the relatively homogeneous portions of
feature space isolated by this rejection rule (Table 1).

Screening. The rejection criterion is used to detect
characters with high confidence, and unlikely to bene-
fit from classifier combination. It is relatively rare for
all classifiers to select the same output category and
be in error (this occurs 0.20% of the time). Most clas-
sifier combination algorithms have difficulty resolving
this type of egregious error. Using the screening rule,
96.489%Jof the characters are accepted, with a substitu-
tion error rate of 0.20%. The remaining 3.52% char-
acters are considered “hard-to-recognize”, and must
undergo further processing.

3 Multiple Classifier Structure

Our data is entered in rectangular boxes which
are easily detected using a contour following algo-
rithm. Within each box, the image is smoothed
and the connected components of the smoothed im-
age are detected. Features of the segmented char-
acter are then computed. The contour tangents
are derived by smoothing and sampling the chain-
code description of the character. The Zernike mo-
ments are computed by determining the inner prod-
uct of the character bitmap with the Zernike kernel
of the form Vam(p,8) = Rum(p)e’™ where Ry,m(p) =
D R G L) P
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pattern vectors used for classification. These patterns
are then classified using NN. Each classifier output
may be any measure produced by the classifier, or a
function of these measures. For example, the output
may be defined as the actual decision (i.e., the chosen
category), a distance measure, a probability measure,

. These features form the
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Parameter Mut. Tnfo T Mut. info
(Tangents) | (Zernike)
Distance to winner 0988 .0989
Distance to non-winner .0950 .0920
Freq. of winner in KNN .0660 0587
Category freq. entropy 0626 L0810
Distance ratio 0971 .0961

Table 2: Mutual information, I(C, X'), for various pa-
rameters, X',

or the rank of each category. For our purposes, the
classifier output takes the form of (1) the label and
distance of the nearest reference pattern to the un-
known pattern, (2) the label and distance of the K
nearest reference patterns, or (3) the label and dis-
tance to each reference pattern. When using commer-
cial character classifiers, the output is usually type
(1). Since we are using proprietary classifiers, we will
use type (3). The classifier combination logic will ei-
ther directly specify the combined decision or specify
it indirectly by choosing the more credible classifier.

4 Combination Algorithms

Two major theories have dominated the field of dis-
tributed evidence processing: the Bayesian theory and
the Dempster-Shafer theory [14]. We implemented
both, but found more success with approaches based
on voting [13], ranking [16] [10] and a novel dynamic
classifier selection algorithm.

Dynamic Classifier Selection (DCS). We first se-
lect classifier parameters which have the highest mu-
tual information with “correctness”. These parame-
ters form a new “meta” pattern space, labelled by a
correctness value that indicates which classifier was
correct for that (training) meta-pattern. During clas-
sification, a NN classifier finds the nearest reference
meta-vector, thus selecting the classifier whose output
category is adopted.

Parameter Selection. Let X be a candidate classi-
fier parameter that takes on values {z}, and let C be
the classifier “success” variable, given by C = 6‘St,c),
where ¢ is the true identity of the unknown, and ¢ is
the classifier output category. The mutual informa-
tion between X' and C is I(C, X) = H(C,X) — H(X),
where H(X) = — 3" . p(z)logp(z) is the entropy
of X, and H(C, X) is the joint entropy of C and X.
The mutual information is the average amount of un-
certainty in the decision that is resolved by observing
parameter value X.

To determine the most informative parameters for
each classifier, we use a special set of 60,000 characters.
I(C, X) was computed for assorted classifier parame-
ters (Table 2) on screened training data, hence we have
only 3.5% of the 60,000 samples available to generate
a set of reference parameter vectors, or 2100 samples.
To make the pattern space sufficiently dense, we use
only three parameters for each classifier: (1) distance
to the winner, (2) distance to the first non-winner,



Set | NN-Tang | NN-Zern | Prob. | Evid. | DCS
L2-dist L1-dist | Reas. | Reas.

98.39 96.89 08.58 | 98.55 | 98.79

98.96 97.01 08.82 | 98.67 | 98.92

98.50 97.20 08.88 [ 98.76 [ 98.97

08.61 96.97 08.99 [ 98.87 | 98.88

Y W G ]

98.60 97.40 08.95 [ 98.91 | 98.90

avg 98.04 97.09 98.84 [ 98.75 | 98.89

Table 3: Multiple Classifier Combination.

Set | NN-Tang | NN-Zern | Ratio | Rank | Joint
L1-dist L1-dist K=35

1 98.64 96.89 99.16 [ 99.10 [ 99.15
2 08.86 97.01 99.36 [ 99.40 [ 99.39
3 98.75 97.20 00.24199.24 [ 99.36
4 98.91 96.97 09.14199.34 [ 99.37
5 08.96 97.40 09.31 1 99.35 | 99.41
avg 98.82 §7.09 099.24199.29 [ 99.34

Table 4: Combination via

Single-Parameters.

Classifier

and (3) the distance ratio of the first non-winner to
the winner.

5 Experimental Results

The NIST-3 database of hand-printed characters [(ﬂ
contains approximately 250,000 isolated hand-printe
digits scanned at 300 dots per inch. We partitioned
the NIST database into the following non-overlaping
sets: (1) training set, 118,000 digits, (2) special train-
ing set for DCS, 60,000 digits, (3) test set, 60,000 dig-
its, and (4) reserved, 12,000 digits. The training set
is used as NN references and as a means to generate
a probability model of the pattern space (needed for
probabilistic and evidential reasoning). The special
training set is used for generating DCS parameters, as
well as%)uilding confusion matrices. The test set com-
prises samples from 500 writers not used in training.
Results are given in Table 3.

6 Single Parameter Combination

We then tried a simple single parameter decision
rule. Three parameters were considered: (1) L1-
distance ratio of the non-winner to winner, (2) classi-
fier rank (number of consecutive winners nearest the
unknown), and (3) decision of the joint KNN classi-
fier (the most frequent category amongst the K nearest
neighbours from two classifiers is chosen). For cases
(1) and (2), the output of the NN classifier with the
larger parameter value is selected.

In order to generate error-reject curves, a parameter
based rejection rule is needed. To generate error-reject
curves, we set a threshold, «. If the parameter value,
p, is less that a, then reject. By adjusting the value

of p, we can easily compute the rejection rate and the
error rate (Figure 1).

A sample of character recognition errors is given in
Figure 2. (Note that for display purposes, the char-
acters are normalized to a fixed size, sometimes caus-
ing fragmentations to disappear.) These errors are
attributed to (1) insufficient data in the reference set,
(2) unrepresentative training patterns, (3) ambiguous
test samples, and (4) character segmentation errors.
Building a very large, representative set of reliably la-
beled data is certainly an urgent research objective.

7 Conclusions

This study suggests that nearest-neighbor classi-
fiers operating on different feature sets can be readily
combined to decrease overall error. Qur experiments
confirm that the run-time of NN classifiers can be dra-
matically reduced through pruning the training set
and optimizing the search. The individual classifiers
perform best with K = 1, and with L1 rather than
L2 distance metric. Our contour-tangent features are
better than Zernike moments, even though they pro-
vide no information about the interiors of characters
with holes.

The combined classifiers perform better than the
monolithic classifier system, even when one of the
classifiers is weaker than the other, provided that
the weaker classifier provides new category informa-
tion which is not available to the stronger classifier.
The specific method is not as important as the idea
of combination. In our experiments, we noted that
both probabilistic reasoning and dynamic classifier se-
lection performed equally well (note that DCS used
an additional 60,000 training samples to select opti-
mal parameters). Single-parameter classifier selection
required no training, and is easily adapted to error-
rejection tradeoffs. The joint KNN method (K = 5)
performed best. The consistency of our results among
subsets of the data gives us confidence that we are not
observing an artifact.
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Figure 2. Misrecognized characters
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