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Abstract

In this paper we ezamine the effects of random-
phase spatial sampling on the optical character recog-
nition process. We start by presenting a detailed anal-
ysis in the case of 1-dimensional patterns. Empiri-
cal data demonstrate that our model is accurate. We
then give experimental results for more complez, 2-
dimensional patterns (i.e., printed, scanned charac-
ters). Spatial sampling seems to account for a sig-
nificant amount of the variability seen in practice.

1 Introduction

The study of noise in scanned characters, along
with the development of synthetic character genera-
tors, has attracted a great deal of interest over the
past three decades [8, 1, 2, 5]. The issue of evaluating
noise models from the standpoint of the OCR error
behavior they induce has also recently received atten-
tion [6, 9]. However, most previous work along these
lines has rarely involved the direct comparison of real
and synthetic characters. As a result, it appears that a
very significant — and completely unavoidable — source
of character variation, random-phase spatial sampling,
has been largely overlooked (or at least underempha-
sized) by the OCR community. The objective of this
communication is to demonstrate that random spa-
tial sampling noise gives rise to several readily observ-
able phenomena that bear directly on optical charac-
ter recognition. Greater appreciation of this type of
noise may also lead to more realistic synthetic charac-
ter generators.

Spatial sampling noise is the consequence of the
random, uniformly distributed displacement of the
scanner sampling grid with respect to the charac-
ters. Its importance lies in the fact that it produces
correlated, character-dependent variations that affect
OCR systems very differently from independent, iden-
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tically distributed (i.i.d.) perturbations with the same
signal-to-noise ratio. Furthermore, such sampling-
phase noise cannot be eliminated by technical scanner
refinements, although its effect can be mitigated by
increasing the sampling resolution.

In this paper, we examine the effects of spatial
sampling from several standpoints. We begin by pre-
senting a brief theoretical analysis for the case of 1-
dimensional patterns in Section 2. Our model has
been confirmed experimentally — Section 3 gives data
to support this. In Sections 4 and 5, we consider
the more complex case of 2-dimensional patterns (i.e.,
characters). Finally, we summarize the paper and of-
fer some conclusions in Section 6.

2 Analysis of 1-Dimensional Case

In this section, we explore the effects of sampling
variation in one dimension. We shall assume that the
grid shift is a random variable uniformly distributed
over a distance equal to one sampling interval. The
digitized pattern is generated by sampling an analog
pattern at integral coordinate points (see Figure 1).

For a single black stroke of length L = [, digitiza-
tion produces a run-length of N black pixels with the
following probability distribution on N:

-1 ifn=[l]—1
1= [N +1 ifn=1[]

0 otherwise

PI(N:n|L:l):

In the case of an analog pattern made up of mul-
tiple strokes, we place the pattern along a coordinate
axis. As we slide it along the axis by small amounts,
the resulting digitized pattern changes. We see a new
pattern as soon as one of the boundaries crosses a sam-
pling point, and we continue to see the same pattern
until another boundary crosses a sampling point. Fig-
ure 1 shows a binary waveform and the corresponding



{0, 1} strings produced at four different displacements
of the sampling grid.
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Figure 1: Spatial sampling in 1-dimension.

It can be shown that the number of possible digi-
tal variations equals the number of boundaries (color
transitions) in the analog pattern [11]. Furthermore,
given the coordinate locations of the transitions in the
analog pattern, the distance the pattern can be moved
between two successive boundary crossings equals the
relative probability we will see the corresponding dig-
ital pattern. Figure 2 plots frequencies-of-appearance
for the patterns of Figure 1 at two sampling resolu-
tions.
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Figure 2: Digitized pattern probabilities.

As a direct consequence of spatial sampling vari-
ation, we note that stroke length is not unimodally
distributed. The histogram for a single black stroke
has a sidelobe on the right if its length is just under
an integral number of sampling intervals, and on the
left if its length is just over (see Figure 3).

3 Evaluation of 1-Dimensional Case

To test the validity of our model, we conducted
an experiment comparing the predicted and observed
probabilities for a simple pattern. For input, we used a
linear bar-code from [10]. The pattern was placed with
the bars slightly tilted (= 2°) to simulate a uniform
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Figure 3: Stroke-length histograms.

Probability
Quantized Pre- Observed
Pattern dicted | Test Training Owverall

4,744,353 | 0.01 | 0.066 0.025  0.041
4,7,3,5,3,53 | 0.19 | 0.170 0.180  0.176
3,8,3,5,3,5,3 | 0.40 | 0.290 0.390  0.350
3,7,4,5,3,53 | 0.02 0 0.031  0.019
3,7,4,4,444 | 024 | 0.283 0.220  0.243
3,7,4,4,3,54 | 0.02 | 0.066 0.031  0.045
3,7,4,4,3,53 | 0.12 | 0.085 0.087  0.086

| Partial Sum | 1.0 | 0.962 0.957  0.959 |
3,7,4,5,3,4,4 0] 0.012 0 0.007
3,7,4,4,4,5,3 0 | 0.006 0.019  0.011
3,8,3,4,4,5,3 0| 0.018 0.009  0.015
3,7,4,4,4,4,3 0 | 0.006 0 0.004
3,8,3,5,3,4,4 0 0 0.009  0.004

Table 1: Experimental evaluation of a 1-dimensional
pattern consisting of four black strokes.

shift-rate in the longitudinal direction. The scanning
spot-size was set at 1/75 of an inch. The rows of the
resulting scanned pattern were used as 1-dimensional
samples. The total number of patterns so obtained
was 267.

Individual stroke widths were estimated from a por-
tion of the sample set (161 of the patterns). These
were used to predict the possible digitized patterns
and their respective probabilities of appearance. The
results were then compared to the observed frequen-
cies for the remainder of the sample set (106 patterns).
Table 1 presents this data.

Similar experiments were carried out with other 1-
dimensional patterns [11]. In all cases we found that
our spatial sampling model could predict the most
common digital patterns, and also provide a relatively
accurate estimate of their frequencies-of-appearance.
Less than 10% of the patterns in each case did not
belong to the predicted set of variations. It is evi-
dent there are other factors that affect the digitization
process, many related to the scanning hardware and
difficult to analyze, but clearly random-phase noise in
sampling is itself a major factor worth studying.



4 Models for 2-Dimensional Case

While 1-dimensional patterns are amenable to rig-
orous analysis, more complex 2-dimensional shapes
(e.g., printed characters) are not. In this section, we
describe an empirical model for characterizing digiti-
zation noise in 2-dimensional patterns.

We assume a sampling grid of square cells arranged
in vertical columns and horizontal rows. Each cell
covers an area equal to one unit, which is also the size
of a pixel. Figure 4 illustrates the variability caused
by different placements of the sampling grid. Clearly,
if the grid is perfectly aligned with the bitmap being
sampled, each cell will cover exactly one pixel (e.g.,
the upper portion of Figure 4). However, in the case
the grid is shifted, cells may overlap several pixels of
different colors (e.g., the lower portion of Figure 4).
Under our model, we decide a cell is white if the area
it covers is more white than black.

Figure 4: Variation due to sampling grid placement.

If the integral of the point spread function is ap-
proximately linear near the threshold, then the ef-
fects of threshold variation can be approximated by
a random displacement of the sampling delta function
(sampling spot) with respect to the edge in the input
image [11]. However, such an approximation is valid
only on at those edge points in the vicinity of which the
edge is roughly straight. The approximation does not
reflect accurately, for example, the round-up phenom-
ena at corners induced by the sensor’s point spread
function. We therefore apply an additional blurring
process at the corners of a contour prior to threshold
variation.

Figure 5(a) simulates random-phase spatial sam-
pling on three instances of a 12-point Helvetica ‘M’.
Figure 5(b) is the same reference character digitized
with a small amount of independent, identically dis-

tributed threshold noise. The effects of combining
random-phase sampling with threshold noise are illus-
trated in Figure 5(c). For comparison, Figure 5(d)
shows three scan-digitized samples printed using a
600 dpi laserprinter.
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Figure 5: Synthesized and real character bitmaps.

5 Evaluation of 2-Dimensional Case

In this section, we present a study of the effects of
spatial-sampling on the shape of 2-dimensional pat-
terns.

We begin by considering some simple statistical
measures. Figure 6 shows the distinct effects of the
sampling phenomenon on the measured area for 900
instances of a 12-point Computer Modern Sans Serif
‘e’. Histogram (a) is for spatial sampling, (b) for i.i.d.
threshold noise, (c) for the combined effects of sam-
pling and threshold variation, and (d) for real scanned
characters. Similarly, Figure 7 shows stroke-width his-
tograms for the same sets of characters. It is quite
clear, for example, that average stroke width is more
affected by sampling than by threshold noise.

Next, we consider the effects of digitization on a
chain-code representation of the character’s boundary.
A chain-code consists of a string of symbols represent-
ing the vectors joining two neighboring pixels along
the boundary of a shape [4]. We measure the difference
between two shapes by comparing their chain-codes
using well-known string matching techniques [12, 3].
Figure 8 shows, for example, two instances of the let-
ter ‘-, the chain-code for each, and the difference be-
tween the two images in terms of string edit distance.
From the results of the string matching, we compute
an error distribution profile along the chain-code of a
canonical reference character.
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Figure 6: Area histograms for CM ‘e’.
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Figure 7: Stroke-width histograms for CM ‘e’.

For our tests, we generated two sets of experimen-
tal data, both based on characters typeset in 12-point
Helvetica:

1. Chain-codes for synthesized characters produced
by sampling the reference character bitmap.

2. Chain-codes for real characters that had been
printed and scanned.

The experiments were run with three different char-
acter patterns: ‘-7, ‘e’, and ‘M’. 1,000 identical charac-
ters were printed on a page at 600 dpi and scanned at
300 dpi. Two sets of synthetic data were generated,
each containing 1,000 samples. In the first set, we ap-
plied only random threshold variation. In the second
set, the samples were the result of the combined effects
of random grid shifts and threshold variation
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Figure 8: Using string matching to describe the dif-
ferences between character shapes.

Figures 9 — 11 show histograms of the number of ed-
its performed at each chain-code position for the 1,000
copies of ‘-7, ‘e’, and ‘M’, respectively. The upper half
of each figure represents the synthetic data and the
lower half the real data. As can be seen, the profiles
for the real data are quite different from those for the
synthetic. It is evident that threshold variation alone
accounts for little of the distortion we observed in the
digitized patterns.
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Figure 9: String edit histogram for ‘-’ (threshold only).

When combined with spatial sampling noise, how-
ever, the results are much closer to the real data. Fig-
ures 12 — 14 show histograms of the number of edits
performed at each chain-code position for the 1,000
copies of ¢-’, ‘e’, and ‘M’, respectively. As before, the
upper half of each figure represents the synthetic data
and the lower half the real data. The characters gener-
ated using the combined spatial /threshold model seem
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Figure 10: String edit histogram for ‘e’ (threshold
only).
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Figure 11: String edit histogram for ‘M’ (threshold
only).

to match the scanned characters quite well.

The effects of sampling noise on chain-code repre-
sentations are non-uniform; rather, they exhibit cer-
tain structural patterns. Each chart has numerous
characteristic peaks. The scanned characters seem a
bit “richer.” This suggests there are other sources
of noise which contribute to differences in the chain-
codes. Still, the locations of most of the peaks are
duplicated precisely in the synthesized characters.

6 Conclusions

In this paper, we have explored the effects of
random-phase spatial sampling on scanned patterns.
We verified a prediction that the size of a pattern
(i.e., the number of black pixels) has a distinctly mul-
timodal distribution. According to our model, the
relative heights of the peaks depend on minute varia-
tions in sampling resolution, character-dimension, and
stroke width. Variations in the latter are greater than
can be accounted for by i.i.d. pixel noise. We demon-
strated that there exists a significant amount of struc-
ture in the variations in chain-code representations of
character boundaries. Furthermore, we showed that it
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Figure 12: String edit histogram for ‘-’ (combined spa-
tial/threshold).
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Figure 13: String edit histogram for ‘e’ (combined spa-
tial/threshold).

is possible to statistically predict pattern variation: as
a function of “ideal” shape, sampling frequency, and
threshold noise.

At this early stage, we have only investigated the
effects of sampling noise on lower-level features (i.e.,
pixels). A more complicated, but very important, task
is to characterize the effects of sampling on higher-
level features and the performance of vision algorithms
and systems as a whole. One such preliminary study
is presented in [13]. A goal of our future work is to
study the relationships between the scanning process,
pattern shape, and the mathematical algorithms we
use to process them.
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Figure 14: String edit histogram for ‘M’ (combined
spatial/threshold).
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