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Validation of Image Defect Models for
Optical Character Recognition

Yanhong Li, Daniel Lopresti, George Nagy, and Andrew Tomkins

Abstract—In this paper, we consider the problem of evaluating character image generators that model distortions encountered in
optical character recognition (OCR). While a number of such defect models have been proposed, the contention that they produce
the desired result is typically argued in an ad hoc and informal way. We introduce a rigorous and more pragmatic definition of when
a model is accurate: we say a defect model is validated if the OCR errors induced by the model are indistinguishable from the errors.
encountered when using real scanned documents. We describe four measures to quantify this similarity, and compare and contrast
them using over ten million scanned and syrithesized characters in three fonts. The measures differentiate effectively between
different fonts and different scans of the same font regardless of the underlying text.

Index Terms—OpticaI character recognition, document image defect models, OCR error classification, defect model validation.

1 INTRODUCTION

DIFFERENCES between documents account for far more
of the variation in OCR error rates than do differences
between classification methods adopted by the various
OCR manufacturers [1]. Surprisingly, the error rate
achieved on a given document by mature OCR systems
varies at most by a factor of two, while the error rate be-
tween documents within a given application may vary by
as much as 100:1 (e.g., from 90% to 99.9% accuracy). The
quality of a document, from an OCR perspective, is there-
fore defined in practice by the error rate it induces.

OCR accuracy depends on document composition
(typeface, point size, spacing); printing (ink-spread, strike-
through, paper defects); copying (skew, streaking, shading);
and digitization (blurring, sampling, thresholding). Other
document manipulations, such as folding, microfilming,
and facsimile transmission, may add further degradation.
(In handprinted character recognition, the motivation of the
writer is often the dominant factor.) Not even the digitiza-
tion process is under the complete control of the OCR
manufacturer—the prevalence of image databases, desk-top
scanners, and digital facsimile requires accepting bitmaps
generated by arbitrary, unknown scanning systems. A small
fraction of highly degraded pages can significantly increase
the overall error rate and the resulting post-editing cost [2].

In character recognition, it has proved difficult to model
mathematically either the signal or the noise. Printed and
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handprinted characters simply are not amenable to concise
formal description, and the sources of noise and distortion
are manifold and complex. However, just as hope for the
predictive modeling of the classification process has faded,
there has been a marked resurgence of interest in pseudo-
random defect models for generating large synthetic sam-
ple data sets. Although some aspects of these models are
based on observable physical phenomena, compelling ar-
guments can also be made for purely empirical or descrip-
tive models [3]. ——_

The use of randomly-generated characters in place of
real data was popular twenty years ago for the same reason
it is popular today: it is much easier to generate large data
sets from a few prototypes under program conirol than it is
to scan, segment, and label real data. The earliest defect
models for generating synthetic data for OCR were based
on salt-and-pepper noise. The noise source produced inde-
pendent and identically distributed (i.i.d.) random vari-
ables. Some researchers were amazed at how well even
simple classifiers could cope with impressively large
amounts of such noise.

Today’s models are far more realistic at simulating the
distortions that real OCR devices must face. They usually
comprise a combination of deterministic and randomized
sources of distortion that are parameterized to reflect the
prevalence of various types of noise. Typically, typeface
variations are modeled using prototypes from digital fonts.
Degradations that arise from the imaging, copying, or dig-
itization (scanning) processes are also treated. Most of the
models described to date produce individual character
samples rather than entire documents, but page-
composition software can be used in combination with
noise models to produce realistic renditions of entire pages.

While a number of defect models have been proposed in
the literature, their proponents usually argue that they pro-
duce the desired result in an ad hoc and informal way. In
this paper, we introduce a rigorous and more pragmatic
definition of when a model is accurate: we say a defect
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model is validated if the OCR errors induced by the model
are indistinguishable from thé errors encountered when
using real scanned documents.’

After providing a brief overview of defect models and
their applications, we present our proposal for defect model
validation, which is based on the comparison of OCR error
sets. We describe four measures to quantify this similarity,
and evaluate them using over ten million scanned and syn-
thesized characters in three fonts. The measures differenti-
ate effectively between different fonts and different scans of
the same font regardless of the underlying text. We con-
clude the paper with a discussion of the effectiveness of this
approach and areas for possible improvement.

2 DEeErFecT MODELS AND THEIR APPLICATIONS

Before presenting our method in detail, we describe several
defect models, list some of their applications, and consider
alternative approaches to validation.

2.1 Salt-and-Pepper

The most common method of simulating noise in gray-scale
images is to add normally distributed white noise. Another
popular noise source is the multiplicative Poisson process.
For bi-level images, however, it is simplest to randomly and
independently switch black pixels to white with probability
p, and white pixels to black with probability 4.

2.2 Clumps

An improvement over this white-noise model, local corre-
lation between pixels, was introduced by Suen and Wang in
1983 [4].

2.3 Deterministic Degradation

Pavlidis generated isolated character samples from photo-
typesetter font descriptions of nine different typefaces using
a scan-conversion algorithm. He used the model to show
the effects on classification of horizontal and vertical scal-
ing, rotation, sampling rate, and amplitude quantization
threshold [5].

2.4 Pseudo-Random Defect Models

Baird classified over one million character arrays generated
from one hundred different digital fonts [6]. Some of the
parameters are fixed, and some are probabilistic [7]. The
variations modeled in an eight-million character test set
that Baird contributed to a public-domain database [8] are:
nominal point size, spatial sampling rate, character skew
(rotation), horizontal and vertical scaling, horizontal and
vertical translation, individual pixel displacement, Gaus-
sian point-spread function, and threshold.

2.5 Digital Bitmaps

Experiments on bitmaps obtained from digital fonts remain

1. In truth, the problem we address is more properly termed “defect
model invalidation,” since our null hypothesis is that the model and real
data come from the same population. Proving that a particular model is
always accurate seems inherently more difficult than showing that one is
invalid. Still, we prefer the “positive” terminology.

popular. Recently, Jenkins and Kanai showed that commer-
cial classifiers are often more accurate on clean scanned -
versions of the characters than on the digital prototypes
themselves [9].

2.6 Edge Noise

For their word recognition experiments, Khoubyari and
Hull generated entire passages, in different typefaces, from
the Brown Corpus [10]. They thickened the character
strokes to produce some touching characters, then ran-
domly erased some of the black pixels to simulate broken
characters. By averaging several instances of the same
word, they obtained impressive word-recognition results.

2.7 Pixel Morphology

A pseudo-random defect model based on mathematical
morphology has been developed by Haralick and his col-
leagues. In this model, the probability of a change in a
pixel’s value depends on its distance from the edge of the
character [11].

2.8 Perspective Distortion

Haralick has also modeled the geometric and photometric
distortions introduced by the curl of the pages when copy-
ing bound volumes [11].

2.9 Page Distortion

Buchman's page distortion model allows for varying the
amount of rotation, blurring, line addition and drop-out,
speckle, contrast, bleed-through, and amplitude quantiza-
tion [12].

A trained observer would not confuse any of the pub-
lished ensembles of artificial characters with scanned copy,
but some individual characters do look authentic. One
possible reason for the lack of realism is that few if any of
these models simulate the random phase angle of spatial
sampling, which gives rise to highly correlated noise [13],
[14]. Yet the displacement of the character pattern relative
to the scanning array is one of the most significant sources
of distortion for cleanly printed characters in common point
sizes. It can, for instance, change a sans-serif lower-case “el”
(i-e., l) from a column two pixels wide to a column three
pixels wide that may be mistaken for an upper-case “eye”
(i.e., [). Furthermore, it is the only source of noise that af-
fects uniformly all bi-level scanners with a given spatial
resolution and that does not require any calibration.

The models mentioned above are intended for printed or
typewritten characters only. However, models for hand-
printing have also been developed [15], and Plamondon
and his colleagues have demonstrated a physiologically-
plausible generative model for cursive writing [16]. As
mentioned, individual variations in handprinting and
writing often dominate noise due to the copying or scan-
ning processes. '

A realistic defect generator for digitized characters
would have many applications. In the design phase, an ac-
curate model could be used for training set augmentation
and parameter optimization. From an analytic standpoint,
it would facilitate controlled experiments, performance
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prediction, and sensitivity analysis. To the best of our
knowledge, however, none of these applications has been
successfully validated in the sense that the phenomena ob-
served for synthetic data have been shown to transfer
quantitatively to real data. '

3 THE VALIDATION PROBLEM

A number of approaches have been suggested for valida-
tion (or related) problems:

3.1 Turing Test

Can a human observer determine whether a given sample
was synthetically generated? This test is not necessarily
conclusive, since most humans have little experience judg-
ing digitized text.

3.2 Learning

Does the error rate on real data improve after a classifier
has been trained on the simulated data? While this criterion
may appeal to an OCR engineer, it does not allow distin-
guishing between two simulated data sets that improve the
error rate equally, and is as much a function of sample size
as model accuracy.

3.3 Reproduction of Observed Samples

One proposed measure of a defect model is its ability to
reproduce pixel configurations observed in “live” text. At
normal scan resolutions, exact reproduction is improbable;
hence a matching or distance criterion must be introduced.
Devising such a metric amounts to designing an ad hoc
classifier.

3.4 Hypothesis Test on Pixel Distributions

In principle, given the multinomial nature of the class-
conditional pixel distributions, it is possible to test whether
the distribution on the synthetic data is similar to the distri-
bution on real data, as proposed by Kanungo and his col-
leagues [17]. However, it seems unlikely that a single dis-
tance measure could capture all possible differences be-
tween two pixel distributions. Constructing some type of
stochastic metric to determine the statistical similarity of
the two sample sets leads us to the next suggestion.

3.5 Hypothesis Test on Feature Distributions

If the number of features is relatively small, and the distri-
butions take on few values, then in principle this is a feasi-
ble approach. However, even for only 10 classes and 10-
dimensional normally-distributed features, over 500 pa-
rameters must be estimated. Assuming that the features (or
pixels) are class-conditionally uncorrelated just begs the
question. A recent study compares two (real) hand-printed
data sets using Karhunen-Loeve expansions of locally-
averaged pixels [18]. But it is difficult to make a sound ar-
gument for the relevance of this particular set of features for
classification (as opposed to mean-square reconstruction of
the patterns).

3.6 Cross-Validation

A measure of the compatibility of two data sets A and B,
from the viewpoint of classification, is the relative error
rate in the following experiment: a classifier is trained on
a subset of A and tested on a different subset of A, and also
on B. Then the converse experiment is performed, with
training on a subset of B. If all four error rates are essen-
tially the same, then there is reason to believe that A and

‘B are similar, or at least equally easy (or difficult) for the

given classifier [18]. This approach is most similar in spirit
to our proposal.

3.7 Calibration

If the printing, copying, and scanning mechanisms are
available to the experimenter, then physical model parame-
ters could be measured using test patterns. Baird has dem-
onstrated a method that recovers most of the parameters
[19]. He has yet to calibrate the model against scanned data,
though. Even if a set of parameters were obtained, the
question of how completely the selected defects model real
data would remain.

None of the above approaches appears to provide a satis-
factory method of determining whether a given model rep-
resents those aspects of reality that are being investigated,
i.e., the defects that give rise to the misclassification of
scanned data.

4 A PROPOSAL FOR VALIDATION

Our proposal is based on the widely accepted notion that
the relationship between two entities may be quantified by
means of a statistical comparison of relevant measurements
taken on the entities. In our case, the two entities are

1) a real data set and
2) a synthetic data set generated by the model to be
validated.

The novel part of our proposal is that the measurements
consist of error distributions generated for each data set by
a classifier of interest.

The general framework we envision for document defect
model validation is presented in Fig. 1. As depicted in the
figure, we start from an on-line reference text. In the case of
the control, shown on the left, the text is printed and
scanned, thus introducing noise. On the right side, elec-
tronic text is transformed into a page image without ever
having been rendered on paper. The defect model under
study is then applied to mimic real-world damage.

When the two sets of document images are OCR’ed, they
exhibit their own unique error characteristics. The similar-
ity between these error distributions is calculated by the
validation procedure. If the value returned indicates a close
enough match, the defect model is considered validated,
otherwise it fails. In this paper, we discuss four measures
which can be used to perform the comparison. To gain
some intuition about their performance, we present ex-
perimental data drawn from the printing, scanning, and
OCR’ing of a large body of text using three different type-
faces. The resulting analysis suggests, surprisingly, that this
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method may be powerful enough to obviate the require-
ment that the two error sets be generated from the same
canonical text.

First, however, we must define the notion of an error dis-
tribution more formally. The OCR process introduces errors
which can be identified and categorized using an error
classification procedure. An OCR’ed data set induces a dis-
tribution over the set of errors based on the relative fre-
quencies of each type.
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Fig. 1. The document defect model validation process.
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For instance, if standard string edit distance is employed
[20], the possible errors are single character deleticns, in-
sertions, and substitutions. This simple model does not,
however, capture the notion of segmentation failures cor-
rectly. Consider, for example, the pattern {m — m}.
Clearly this error represents a single event, a 1:2 substitu-
tion, rather than an insertion followed by a substitution (or
vice versa). It is important that our classification procedure
categorize such errors properly for two reasons. First, errors
are infrequent in high-quality OCR; we wish to avoid intro-
ducing unnecessary variance. Second, analysis of the distri-
butions is made tractable by assuming that errors are inde-
pendent; highly conditioned patterns such as {— r} always
immediately preceding {m — n} weaken the independence
assumption.

The error classification procedure we use, as described in
[21], handles arbitrary g:h multi-character substitutions. In
all of our tests, we set 0 < g, h < 4, so patterns such as
{nn — I}, an error we observed in practice, are correctly
identified as a single event. Generally, we only consider
errors involving “printing” characters in our analyses (i.e.,

we ignore “white-space” errors). This issue is discussed
further in a later section.
The algorithm is based on a modified version of the string

edit distance computation. If S = s;s, ... s, is the original
(source) line, R = 77, ...

C.subg:,l

7, is the OCR (recognized) line,
is the cost of performing a g:h substitution, and d,, is

the edit distance between s, ...
primary recurrence is
d .= Wi jon+ Couty, (Sizger = SisTiopan - 1)) (1)

min
b1 o<gh<a
gth>1

s, and 77, ... v, then the

Saving the optimal decisions as d,; is computed makes it
possible to enumerate the OCR errors after the edit distance
phase of the algorithm completes. Table 1 shows some ex-
amples from our experiments.

TABLE 1
Some OBSERVED OCR ERROR PATTERNS
Deletion | Insertion 1:1 1.2 2:18ub | 2:28ub
Sub Sub

Original her, were in bar and |  flourish forward
Text : '
OCR her were in [ bat | ancl | Bourish | foMilard
Qutput
Error = ~> {sp) r—t d—cl fl-B woMIl |
Patiern

More formally, let E = {e,, e,, ..., ¢,} represent the set of all
possible error patterns. The similarity between the real and -
synthetic data sets is quantified by means of a real-valued
probability distance function:

Fllpury opb gy gl >R ()
where '

p, = Prob[pattern ¢, occurs in the real data]
g, = Prob[pattern ¢, occurs in the synthetic data].

The function F may be any one of a number of measures
available for comparing two probability distributions, e.g.,
Chernoff, Bhattacharyya, Matusita, Divergence, Patrick-
Fisher, Lissack-Fu, Kolmogorov [22]. The discrete probabil-
ity functions p, and g, are the error distributions of the real
and synthetic data sets. Therefore,

n n
ZP;‘ = 2%‘ = 1.
i1 pet

We now discuss two of the traditional measures in more
detail, and describe two others we have developed for
comparing OCR error distributions. The experimental re-
sults to be presented in Section 5 will be expressed in terms
of these four measures, and we shall analyze them in
greater detail at that time. )

4.1 Traditional Measures

Two traditional measures for comparing probability distri-
butions are the Bhattacharyya coefficient and Matusita dis-
tance. The former is defined by
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Bp,q)=-In Y. [pd;- ©)
i=1

In general, the Bhattacharyya coefficient ranges from a
value 0 for identical distributions to e for completely dif-
ferent distributions.

Matusita distance is defined as

n
2
Mp,q) = Z(Pi -q;) - “)
i=1
The range for this measure is from 0 for identical distribu-
tions to ~/n for completely different distributions.

4.2 The Vector Space Measure

The Vector Space model is widely used in information re-
trieval to quantify the similarity between two documents,
or a query and a document [23]. In this approach, a text is
represented by a vector of index terms or keywords. If a
particular element is present in the document, the corre-
sponding entry in the vector is set to 1; otherwise, it is set to
0. The similarity between two texts is then calculated as the
inner-product of their term vectors. This measure is equal to
the cosine of the angle between the two vectors, and hence
is sometimes called “cosine similarity.”

The Vector Space model has also been used recently in
conjunction with OCR in a system that classifies documents
based on keyword frequency using weighted cosine similar-
ity [24].

We treat the two error distributions p and g as vectors by

taking
(P)>
L o),
(

where v;” ) = p; (and similarly for v )- The cosine similar-
ity is then calculated as

A <v§r’>,

ARVt

Vi» )y =
( ) ‘V(P)”“}(‘i)‘

©)

where

7 @ i@l(r) ,vl(q))

i=1

and

The Vector Space measure ranges from 1 for identical dis-
tributions (i.e., the angle between the vectors is (), to 0 for
completely different distributions (i.e., the angle is 90°).

4.3 The Coin Bias Measure

Unlike the previous measures, the Coin Bias measure is
fundamentally new. The intuition behind it is as follows:
Suppose an observer has full information about the distri-
butions p and 4. Now say we secretly choose one of p and g
uniformly at random, generate OCR error patterns accord-
ingly, and show them to the observer. The observer’s

“assignment” is to guess which distribution is being used to
generate the data. For example, suppose p is highly likely to
produce the error {m — rn}, but g almost never does. An
observer shown this error would be justified in guessing
that p was the secret distribution.

For any particular error, the observer knows which dis-
tribution is more likely to produce it and can guess appro-
priately. Therefore, we judge that two distributions are
similar if the observer can do little better than random at
telling them apart. If they are identical, for instance, the
observer will always be presented with an error that is
equiprobable under both scenarios. Since a random guesser
will be right with probability 0.5, a “similarity” value of 0.5
represents perfect validation of a defect model.

We begin by making the reasonable assumption that
OCR errors are independent. Taking advantage of this, we
can simplify the problem to the following question: when
shown one error, chosen at random, what is the probability
the observer guesses correctly?

An error of type e, will be shown with probability
1/2 (p, + q,). The most reasonable strategy for the observer is
to guess p if p, > g, and g otherwise; this leads to the mini-
mum expected error rate (i.e., the Bayes Risk) for what is
effectively a two-class recognition problem. In this case, the
observer will be right with probability max{p,q} / (p, + 4,).
Hence, the total probability the observer is right is

C(p,q) = 2 Prob[correct guess for ¢;]

i=1

- (1 x{p;. 4;}
= ; (E(pi + %)%) (6)

n

1
= 72 (max{p;, g;})-
i=1

The Coin Bias measure is Bayesian, so we have implicitly
assumed that the error patterns represent scanned images
with probability 0.5, and synthetic images with probability
0.5. If these “prior probabilities” are different, the ob-
server’s strategy can be changed in an obvious way to re-
flect this.

5 EVALUATION OF THE VALIDATION MEASURES

In this section, we compare several large sets of real-world
data with three goals in mind: to convey an intuitive feel for
the validation process, to compare the four distance meas-
ures just described, and to examine the statistical nature of
typical OCR error distributions. For the following, we used
different fonts and text sources; intuitively, an effective
validation measure should capture font-specific OCR error
behavior, but be relatively immune to changes in textual
context. Our validation measures exhibit these properties.

5.1 Experimental Procedure

For our experiments, we used an on-line version of Herman
Melville’s novel, Moby-Dick. The ASCI text totals 1,179,194
characters. When formatted in 10-point Times at a spacing
of 48 lines per page, the novel is 318 pages long. The OCR
software we used was OCRServant, ver. 2.03, running on a
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NeXT workstation. For pages printed on a 400 dpi NeXT
laserprinter and scanned at 300 dpi using a Ricoh 15410
flatbed scanner, the overall character recognition accuracy
was about 99.8%.

We printed, scanned, and OCR’ed six complete copies of
the novel: two each in Times, Courier, and Helvetica fonts.
The error distribution was computed for each data set using
the classification algorithm described earlier. We then ana-

lyzed all (g) =15 possible pairings of the data sets using
our four comparison measures.

We used the four similarity measures described previ-
ously: Bhattacharyya, Matusita, Vector Space, and Coin
Bias. Table 2 compares all pairings of the six data sets (two
copies of each of the three fonts), and also lists the mini-
mum and maximum values attainable for each measure.

TABLE 2
VALIDATION MEASURES APPLIED TO REAL OCR TEST DATA

Bhattacharyya  (range [0,00])
Courl I Cour?2 l Times! | Times2 | Helvl ] Helv2
Cour! | 0.000 | 0.115 | 1.627 1.5658 | 1.977 | 1.928
Cour2 0.000 | 1.602 1.535 [ 1.898 | 1.848
Timesl 0.000 0.093 | 1.374 | 1.312
Times2 0.000 | 1.335 | 1.314
Helv1 0.000 | 0.109
Helv2 0.000
Matusita  (range [0,4/n])
“ Courl | Cour2 | Times! | Times2 | Helvl | Helv2
Courl 0.000 | 0.053 0.306 0.303 | 0.370 | 0.367
Cour2 0.000 0.273 0.270 | 0.341 | 0.339
Timesl 0.000 0.030 | 0.294 | 0.262
Times2 0.000 | 0.308 | 0.305
Helv1 0.000 | 0.051
Helv2 0.000
Vector Space  (range [1,0]}
H Courl ! Cour2 | Times! | Times2 | Helvl | Helv2
Courl 1.000 | 0.990 | 0.228 0.225 | 0.034 | 0.037
Cour2 1.000 0.244 0.239 | 0.039 | 0.042
Timesl1 1.000 0.993 | 0.148 | 0.148
Times2 1.000 | 0.150 | 0.149
Helvl 1.000 | 0.979
Helv2 1.000
Coin Bias  (range [0.5,1])
Courl | Cour2 | Timesl | Times2 | Helvl | Helv2
Courl 0.500 | 0.596 0.930 0.927 | 0.978 | 0.977
Cour2 0.500 0.927 0.924 | 0.975 | 0.975
Timesl 0.500 0.577 | 0.932 | 0.926
Times?2 0.500 | 0.930 | 0.925
Helvi 0.500 | 0.598
Helv2 0.500

For the graphical presentation in Fig. 2, each copy of
Moby-Dick was divided into three equal-sized sections, re-
sulting in eighteen data sets of slightly more than 100
printed pages each. We grouped the possible pairings

((128 ) =153 in all) into four categories: same text-same font

(ST-SF); different text-same font (DT-SF); same text-different
font (ST-DF); and different text-different font (DT-DF). Since
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the “raw” distances are not directly comparable, we scaled
and linearly translated them to fill the allotted space in the
figure. For all the measures, it is possible to choose a
threshold that differentiates between fonts when the same
text is used. In all cases except for Matusita distance, the
fonts can be differentiated reliably even when the text
samples are different.
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Fig. 2. Font and text discrimination by validation measures.

How strongly correlated are the measures in terms of the
rankings they induce? To examine this question, we com-
puted the Spearman rank-order correlation coefficient, 7,
between each pair of measures: -

N
6y D}
i=1

s @)
where N is the size of the data set (153 in this case), and Di'
is the difference in the ranking of the ith element. As indi-
cated in Table 3, the Bhattacharyya, Vector Space, and Coin

Bias measures appear strongly correlated (but by no means
equivalent), the Matusita measure significantly less so.

TABLE 3
SPEARMAN RANK-ORDER CORRELATION COEFFICIENTS
FOR ALL PAIRS OF MEASURES

Bhatta- | Matusita Vector Coin

charyya Space Bias

Bhattacharyya 1.000 0.810 0.906 0.949
Matusita 1.000 0.774 0.778
Vector Space 1.000 0.954
Coin Bias 1.000

B.2 Issues in Sampling an Error Distribution

As Table 4 demonstrates, the number of different error pat-
terns encountered is relatively small when compared to the
total number of errors. For example, while there were 724
2:1 substitutions in the Timesl data set, only 33 of these
were unique. (The most common 2:1 error, {rn — m}, oc-
curred 331 times.) The errors are also sparse in their space;
assuming an OCR alphabet size of 76 characters, there are
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roughly 1 x 10 possible error types, only a small fraction of
which will be seen in practice.

TABLE 4
ERROR BREAKDOWN FOR THE TIMES1 DATA SET

Total OCR Errors

—0 -1 —2 — 3 —4
0> n/a 619 1 1 8
1 245 847 63 2 2
2 - 0 724 270 25 7
3> 0 4 7 8 2
4 1 0 0 3 2

Unique OCR Errors

=0 —1 —2 —3 -4
0> n/a 6 1 1 3
= 26 72 21 1 1
2> 0 33 . 44 15 4
3— 0 3 7 8 2
4 1 0 ) 2 1

The question of whether to include non-error patterns
(ie., {& — o}) in the analysis is a natural one. When we
augmented the data for Fig. 2 in this way, all of the meas-
ures lost the ability to discriminate between fonts [25]. Since
it seems reasonable to expect different fonts to exhibit dif-
ferent, characteristic OCR error patterns, this phenomenon
requires some explanation.

The OCR software we used to generate the test data, in
conjunction with the clean, first-generation copy, yielded
very high accuracy rates, occasionally in excess of 99.8%.
Thus, we can expect to encounter an error only every 500
characters or so. For different text samples, variations in the
number of occurrences of each character are significant
enough to overwhelm the effects of the OCR errors. Hence,
different texts can be identified, but font-dependencies ap-
pear less significant.

Intuitively, we are attempting to approximate an error
distribution using a sample. Even though 100 pages is large
by the standard of some OCR experiments, our samples
seem quite small when one considers that roughly half the
non-zero. entries occur fewer than ten times. By focusing
specifically on error patterns, however, it becomes possible
to induce a distribution that retains the relevant informa-
tion for discriminating between two different fonts, or,
hopefully, synthetic and real data.

As noted earlier, we only consider errors involving
printing characters. Empirically, we found that including
space errors yielded distributions with much higher vari-
ances, making it difficult to compare them reliably. This is
undoubtedly a function of the fact that a single “mistake”
made early-on during the top-down analysis of the page
can result in a large number of otherwise independent-
looking space errors (e.g., a speck of dirt in the left margin
can result in extra spaces being inserted at the beginning of
every line). When space errors are included in the analysis,
a slight bias can be noted towards same-font pairings for
the Bhattacharyya and Coin Bias measures, but in no case
are the classes linearly separable [25].

5.3 Comparison of the Measures

We now consider briefly how the measures relate to one
another. Our first observation is that the Matusita measure
is the only one that fails to distinguish between fonts (Fig.
2). In a sense, this is not surprising. Matusita distance is
simply the L, norm, and so has the property that p, = 0.01,
g, = 0.02 contributes just as much to the final value as p, =
0.91, g, = 0.92, even though p, in the former case occurs half
as often as g, while in the latter case it occurs nearly as of-
ten. Thus, for comparing error distributions, a measure that
depends solely on the difference between p, and g, may not
be an appropriate choice.

The Vector Space measure exhibits a similar property.
Consider the following three vectors:

4 5 4
v, =|1000 | v, = 1000 | v, = | 1001 |.
1000 1000 1000

From an information-theoretic standpoint, we would pre-
fer that the added sample in the unlikely first row, as repre-
sented by v,, would provide more information and yield a
substantial difference from v,. On the other hand, an extra
sample in the much more likely second row, as represented
by v,, should give us less information, and result in a distri-
bution that is more similar to v,. However, the Vector Space
method, which measures the angle between two vectors,
does not have this property. As long as the element in the

first row is small, the angle 8,, will be smaller than 6, by a
factor of V2 / 2.

The Coin ‘Bias measure returns the probability that a
knowledgeable observer will guess correctly based on a
single sample. It is quite conceivable that two different
pairs of distributions (p', 4') and (p’, §°) could have the same
coin bias. If the observer were allowed to see more than one
sample from the secret distribution, the probability of
guessing correctly might approach 1 very quickly for (', ¢),
but more slowly for (¢°, ). Tt is unclear whether a new
measure could be devised that makes use of such a conver-

gence property.
5.4 Evaluation of a Simple Defect Model

In addition to the previous experiments, we applied our
validation measures to a simple document image defect
model. In keeping with the theme of the paper, our focus is
not on the model itself (i.e., other more elaborate and accu-
rate models have been described in the literature), but
rather the process of validating it. For this test, we synthe-
sized three types of distortion: smearing, smoothing, and
thickening. Smearing was simulated by randomly repeating
certain black pixels around character borders. Smoothing
and thickening were implemented by averaging each pixel
with its neighbors, using a threshold chosen to favor black
pixels.

On visual inspection, the effects seemed quite plausi-
ble—we were unable to distinguish the real data from the
synthetic. We then applied the methods of the previous
sections for a more rigorous analysis. All of the measures
displayed significant differences between the real and
model-generated data. While both data sets exhibited self-
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similarity, none of real-synthetic pairings bore any resem-
blance [25]. Thus, we were able to conclude that this par-
ticular noise model is not very accurate from an OCR
standpoint. In practice, such a model might be abandoned
at this point. Or, more likely, its parameters could be tuned
to produce better results using continual feedback from the
validation process.

6 DISCUSSION

The most important property of the validation process is
that it is grounded firmly in the error distributions induced
by a particular classifier. Similar confusions on synthetic
and real data is a necessary condition for the former to be
substitutable for the latter. It is not, however, sufficient; a
classifier may make identical mistakes on synthetic and real
data for entirely different reasons.

Recall that the function ¥ takes two error distributions
and returns a single value quantifying their similarity. In
practice, it will be necessary to alternate between attempts
to improve the classifier and attempts to improve the defect
model. A low value of F (i.e., the distributions look similar)
suggests improving the classifier. If the change in the clas-
sifier raises the value of F, then the defect model needs to
be tuned. This means that one can never entirely dispense
with real data. Nonetheless, by validating a model based on
its error distribution, we gain several advantages.

6.1 Error Distributions Are Universal

Commercial classifiers are “black boxes”: features, candi-
date rankings, and even confidence measures are not gen-
erally obtainable. However, every classifier returns the la-
bels of the characters it claims to have recognized. These
can be compared with the true labels to categorize the er-
rors that have occurred.

6.2 What the Classifier Does Not See,
Does Not Matter

The approach we have proposed relieves the model from
having to generate distortions that do not affect the classi-
fier. For instance, if a classifier is inherently rotation invari-
ant, then the error distributions, and hence F, will not be
affected by whether the model produces rotated samples or
not.

6.3 Known Reliability

Our confidence in J can be quantified by dividing the two
data sets into subsets and computing the sample variance.
6.4 The Data Sets Need Not Be Identical

If the character frequencies are different in the two data
sets, the error distribution can be normalized. '

6.5 Rejects Can Be Included

If the classifier produces reject characters, they can be ac-
commodated by incorporating additional entries in the er-
ror set.

6.6 We Need Not Depend on a Single Classifier

Classifier-dependence can be reduced by summing the er-
ror distributions from several classifiers, or by averaging
the resulting values returned by F.

To use error distributions, it is necessary to design and
construct the error set carefully. Highly correlated errors
introduce large variances that can invalidate the analysis
(recall the example of the margin speck cited earlier).

OCR is most often a top-down process. While we have
attacked the validation problem at the character level,
much work remains at higher levels in the hierarchy. For
example, a missed scan line that causes 20 errors on a line
of text should be counted as a single, line-level event rather
than as 20 strange-looking, high-variance-inducing charac-
ter-level errors. If a baseline is computed incorrectly, the
resulting error (e.g., {cow — COW?}) should probably not

be counted as a multi-substitution (a 3:3, in this case).
Likewise, the margin speck that results in extra spaces in-
serted at the beginning of every line should be counted as a
single page-level event. Ideally, errors should be associated
with the physical process that causes them, at the level
where they occur.

7 CONCLUSIONS

Motivated by the appeal of synthetic data in OCR research,
we have examined the notion of a defect model and its pro-
posed applications. In doing so, we found that the link be-
tween synthetic data and the real world appears to be
missing. The successful application of defect models de-
pends critically on establishing such a link. '

On the assumption that the training of classifiers is a key
application of synthetic data models, we proposed a new
necessary condition for defect-generator validation. This
measure is based on the performance of the classifier under
study on the types of data for which it was designed (ie.,
“real” data), and which the model should attempt to repli-
cate. We believe that the proposed figure of merit, F, meas-
ures exactly the right thing. Whatever the criterion
(Bhattacharyya, Matusita, Vector Space, Coin Bias, etc.), Fis
easy to compute, and requires no assumptions other than
the availability of samples from the two data sets to be
compared and a reliable error classification procedure.

Such a simple check on the validity of synthetic data
may go a long way towards alleviating skepticism about its
potential usefulness in OCR research and development.
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