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Abstract

Most Geographic Information Systems (GIS) make
use only of elementary geometric structures, but
their intrinsic geometric simplicity is balanced by
the need to manipulate large numbers of spatial
entities efficiently and accurately. The emphasis in
GIS is on robust geometric algorithms rather than
on theorems. In GIS, little importance is attached
to worst-case complexity analyses, randomized al-
gorithms, and high-dimensional domains. The com-
pilation of realistic geographic databases is beyond
individual reach, therefore I provide pointers to sev-
eral public-domain data sets. Then I single out
three aspects of GIS for more extensive discussion:
triangulations and proximity diagrams, geometric
visibility, and map projections. I close with a list
of additional GIS applications of computational ge-
ometry.

1 Introduction

Geometry and geography are daughters of Gaea
who have grown apart but are now getting reac-
" quainted. This paper presents a sample of geomet-
ric concepts that arise in the context of Geographic
Information Systems. Because computerized infor-
mation systems usually operate on large databases
(typically millions of coordinates), the emphasis is
on algorithms and procedures rather than on theo-
rems and proofs. With few exceptions, only simple
Euclidean constructs are invoked, but most of the
tools required to manipulate them efficiently were
recently developed in computational geometry.
Geographic Information Systems (GIS) are com-
puterized means of storing, analyzing, and display-
ing data about the earth, its features, the distri-
bution of life on it, and whatever affects human

activity. The broad term GIS came into vogue in
the mid-sixties, and may include the data as well
as the methodology. GIS are designed to answer
queries like: “How many towns with a population
of over 10,000 are within 50 kilometers of a railroad
line in the state of Nebraska?” or “What fraction
of Illinois will be flooded if Lake Huron rises by 20
meters?” or “Which areas of Washington County
are both in the floodplain and near railroad lines?”

The design of GIS draws on conventional
database management systems (DBMS), opera-
tions research, numerical cartography, and com-
puter graphics. Because towns may be represented
as points, rivers as curves, and political boundaries
as polygons, the essential relationships are geomet-
ric in nature. Only a small fraction of the computer

_ code that constitutes a GIS may deal with geomet-

ric constructs (most of the code is probably buried
in the graphical user interface or GUI), but the two-
and three-dimensional geometric (and topological)
relations are the conceptual core.

Two aspects differentiate a GIS from an ordinary
DBMS such as might be used for payroll or class
schedules. First, spatial coordinates do not sup-
port a global ordering: there is no unique sorting
sequence. Second, spatial entities are not readily
viewed as a discrete collection of objects: a contin-
uous view of the world is essential.

Among popular applications of GIS are cadasters
(property records); planning and management of
transportation infrastructure and operations; min-
eral exploration; environmental monitoring; flood
control and hydro power; retail marketing; the lo-
cation of manufacturing, service and distribution
facilities; and agriculture, pasture and timber man-

- agement. The underlying spatial framework may
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be obtained from digitized maps, digital elevation
models, and satellite images.
Many commercial GIS systems are available,
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canging from simple digital atlases costing a few
hundfed dollars to elaborate multi-workstation net-
works for over $100.000. Among the best known
ones are Arc/Info, Intergraph, TNT, ERDAS, and
gmallworld. Systems designed for utility applica-
tions (internal and external plant, conduits, pip-
ing, power lines) increasingly resemble computer-
aided design (CAD) systems, while those intended
for making use of satellite data have complex-image
processing components.

Advances in GIS research are presented at con-
ferences.1 and in three or four specialized jour-

nals.? Some useful introductory texts are (18, 39," °

44, 53, 56] The Federal Geographic Data Com-
mittee (http://www.fgdc.gov/) promotes standards
and publishes a newsletter. The National Center
for Geographic Information and Analysis (NCGIA)
at U.C. Santa Barbara distributes a curriculum and
teaching materials. Many universities offer a course
in computational geometry and several excellent
texts are available [9, 29, 35, 40}.

In the rest of this chapter, I will provide some
sources of geographic data for study and experi-
mentation, and discuss three components of GIS
that have both intrinsic interest and solid geomet-
rical foundations.

2 Geodata

In most countries, government organizations col-
lect and disseminate large and medium scale maps,
related geographic information, and topographic
data in digital form [43]. In the United States,
the principal players are the US Geological Sur-
vey (USGS), the National Imagery and Mapping
Agency (NIMA), the National Oceanographic and
Atmospheric Agency (NOAA), the Soil Conserva-
tion Service (SCS), and the National Aeronautics
and Space Agency (NASA). Mapmakers, like Rand-
McNally, Hammond, and Simon & Schuster, dis-
tribute highway and city maps in digital form.
Specialized firms, like Maplnfo and Intergraph, of-
fer software, directory data, and detailed address-
location information for computerized mapping and
analysis of demographic data for marketing studies.

The USGS maintains an index, of digital data

1The International Symposium on Spatial Data Han-
dling (IGU), the International Symposium on Large Spatial
Databases (ACM Sigmod), the International Conference on
GIS and Environmental Modeling (NCGIA), the National
GeoData Forum, GIS/LIS, and the European Conference on
GIS (EGIS Foundation) among others.

2ntl J. of GIS, Cartography and GIS, Cartographica,
GIS World.

on the World Wide Web at http://www.usgs.gov/.
Among data sets they distribute are elevation
values for the United States recorded at 3 arc-
second intervals. Each file contains over one
million points and corresponds to a 15-minute
quadrangle in the 1:50,000 topographic map se-
ries. The NIMA ETOPOS5 dataset contains

_lower resolution (5 arc-minute) topography includ-

ing bathymetry, for the entire world. A cata-
log of other elevation data may be obtained from
http://www.geo.ed.a.c‘uk/home/ded.html.

The staggering amount of satellite imagery col-
lected since the launch of the first Landsat (ERTS-
A) in 1972 can be obtained (for a price) from
the EOSAT Company in Lanham, MD. Accurate
registration and rectification of the data, taking
into account differences in surface elevation, re-
quires complex geometric transformations and in-

" terpolation, and huge computing resources. Sev-

eral commercial GIS allow the superposition of
recent satellite images on digitized topographic
maps. This technique is vital in monitoring
changes such as coastal erosion, deforestation, de-
sertification, overgrazing, floods, and forest fires.
(Examples of beneficent changes are harder to
come by.) Landsat images can be found at
http://edcwww.cr.usgs.gov/Earthshots1.00 /-

Most of these databases are built on a quasi-
rectangular grid, such as latitudes and longitudes,
or state-plane coordinates. Some of the older
statewide GIS are based on 1 km x 1 km cells.
Maps are also digitized into rectangular pixel ar-
rays or bitmaps.

Techniques used for accelerating the processing of
grid data include the Uniform Grid method for line
intersections that takes advantage of the homoge-
neous distribution of the data [22], quad trees (46],
and R-trees [24]. These techniques are all designed
to speed up query processing by taking advantage
of the locality of most entities of interest, i.e., their
small size relative to the extent under considera-
tion. Alternative methods, described in the next
section, explicitly partition the entire extent during
a preprocessing step, before any queries are pro-
cessed. These non-grid-based tessellation methods
are probably of greater interest to students of ge-
ometry.

3 Triangulated Networks and
Proximity Diagrams

Aside from the rectangular grids discussed above,
the most common data structures used in GIS are
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Figure 1: Several different triangulations of a set of nine points enclosed by their convex hull.

based on Delaunay triangles and Voronoi polygons.
As we shall see, these two are intimately related.

3.1 Triangulated irregular netwdrks

Instead of simply referring to locations of inter-
est by their coordinates (e.g., latitude and longi-
tude), it is convenient to partition the spatial do-
main of a geographic information system into mutu-
ally exclusive cells. An assembly of triangular cells,

called a Triangulated Irregular Network (TIN), of-

fers many advantages over more complex cell shapes
(14, 19, 38]:

1. Triangles can compactly fill any area: they tes-
sellate the plane.

2. Given a set of points in the plane, simple algo-
rithms exist (try writing one!) for linking them
into a TIN [45]:

3. Each cell can be represented by a simple data
structure: given three vertices, there is no am-
biguity about the edges. (An interesting prob-
lem is to devise a data structure where append-
ing a triangle to an edge of the boundary re-
quires adding only the information associated
with the new node.) :

4. The planar graph formed by the' vertices and
edges—the triangles are “faces”—has an al-
most homogeneous structure. On the average
the nodes are of degree six, and n points give
rise asymptotically to 3n edges and 2n trian-
gles.

5. When an elevation value is associated with
each vertex of a triangulation, the elevation
value at any point of the resulting surface can
be linearly interpolated from vertex elevations.

Figure 2: Delaunay triangulation of the nine points
with their “empty” circumcircles.

This results in a piecewise-linear surface model.
In contrast, elevations cannot be linearly in-
terpolated in a rectangular grid model because
four points overconstrain a plane.

6. TINs generalize readily to higher dimensions,
where they are called simplicial cell-complezes.
These find uses in solid modeis of mechanical
parts, geological strata, and finite-element so-
lutions of differential equations [4, 5, 49, 52}.

Figure 1 shows several different triangulations of

.a set of nine points enclosed by their convex hull.?

Among specific types of triangulation are the min-
imum weight triangulation, which minimizes a cost

3The convex hull is easily visualized as a rubber band
around the points in 2-D, and as shrink-wrap in 3-D. Writ-
ing an efficient algorithm to find the convex hull of a set
of points, especially in higher dimensions, is not easy. The
computational geometry literature is littered with faulty at-
tempts. '
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Figure 3: Swapping diagonals to obtain empty cir-
cumcircles increases the minimum interior angle.

function defined on the edges, constrained triangu-
lation, which requires including some prespecified
edges, and Delaunay triangulation, discussed below.

3.2 Delaunay Triangulation

In GIS, a particular type of triangulation, called De-
launay Triangulation, is standard. It is named after
the author of a paper titled On The Empty Sphere.
Presented in 1931 to the Soviet Academy of Science
and dedicated to George Voronoi, it demonstrated
the existence of a triangulation such that the cir-
cumcircle of any triangle contains no vertices other
than those of its inscribed triangle? {7]. Figure 2
shows the Delaunay triangulation of the same nine
points with their “empty” circumcircles.

From the point of view of interpolating terrain el-
evations, the chief merit of Delaunay triangulation
is that among all possible triangulations, it maxi-
mizes the minimum interior angle of each triangle.
This tends to equalize the lengths of the sides of
the triangles, resulting in more robust interpolation.
The minimax angle property also allows construct-
ing a Delaunay triangulation from any arbitrary tri-
angulation by simply swapping the diagonals of any

41f the set of points is in general position, i.e., no three
points are collinear.

quadrilateral (formed by two triangles that share a
side) if the swap increases the smallest of the six
interior angles (Figure 3).

Another unexpected property of Delaunay trian-
gulation (that does not hold for arbitrary triangu-
lations) is a partial ordering with respect to any
“viewpoint” in the plane {10, 15]. The triangles
can be assigned consecutive integer labels in such
a way that an arbitrary point in any triangle can
be joined to the viewpoint by a line segment that
passes only through triangles with a lower number.
In the Delaunay triangulation on the top of Fig-
ure 4 the viewpoint is one of the vertices (circled)
of the triangulation. The numbering shown is con-
sistent with the partial order. For instance, any
point in triangle #8 can be joined to the view-
point with a straight line segment either through
triangles #5 and #2, or through triangles #4 and
#1. In the bottom non-Delaunay triangulation of
the same points, no such numbering exists. This
property of Delaunay triangulation (called acyclic-
ity) can be exploited for computing the region of
the terrain (represented by a TIN) that is visible
from a specified viewpoint; see Section 4.

The connectivity of the Delaunay graph has been
extensively investigated. It can be shown, for in-
stance, that it contains the minimum spanning tree,
which is the straight-line connection among the

IS

[ T

Figure 4: Above: a partial ordering of Delaunay
triangles. Any ray from vertex 0 to a point within
any triangle passes only through triangles with a
lower number. Below: the triangulation is cyclic
with respect to the vertex 0: no such numbering is
possible.
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points that has minimum length. It has also been
shown that the Delaunay graph is not necessarily
Hamiltonian (i.e., contains a cycle passing through
all the points), but that it is so with high probabil-
ity {8]. ’

3.3 Voronoi Diagrams

The Voronoi diagram® defined by a set of points
is a subdivision of the plane into polygons. Each
polygon is associated with one of the given points
called its seed or site, and encloses the convex region
of the plane closer to its seed than to any other
point. It is therefore convenient to think of the
Voronoi diagram in terms of the intersections of the
halfplane regions nearest to each of every pair of
data points (Figure 5). For a scholarly survey of
the properties of the Voronoi diagram, see [1].

Voronoi polygons are sometimes called Thiessen
polygons in geography and Dirichlet tessellation in
geometry. They can be used for nearest-point prob-
lems: if the seeds represent distributors, then to
find out to which distributor a consumer is clos-
est, it is sufficient to determine in which polygon
the consumer is located (this is also called the post-
office problem). Voronoi diagrams are also imme-
diately useful for finding the closest pair among
n sites, the largest empty figure, and collision-free
path-planning.

The Voronoi diagram is the straight-line dual
of the Delaunay triangulation. Each edge in the
Voronoi diagram is the perpendicular bisector of
an edge of a Delaunay triangle. In fact, some al-
gorithms first construct the Voronoi diagram by a
divide-and-conquer method [40], then convert it to
the Delaunay triangulation by joining every pair of
points that share a Voronoi boundary. “Dynamic
algorithms” can modify an existing Voronoi dia-
gram or Delaunay triangulation as points are added
to the database.

The kth-order Voronoti diagram partitions the
plane into regions where every point is nearer to
a set of k points than to any other point. The num-
ber of Voronoi diagrams of all orders on n points is
O(n®). The Farthest Point Voronoi Diagram, useful
for locating facilities away from undesirable sites, is
the Voronoi diagram of order k, with k =n—-1.

To determine the closest points to each road, we
need a Voronoi Line diagram. The partitions here
consist of a mixture of line segments and quadratic
curves. Other useful extensions are the Weighted-
Distance Voronoi Diagram, where the distances are

SNamed after the Russian turn-of-the-century mathe-
matician.

Figure 5: Voronoi diagram of the nine points.

weighted according to the site from which they are
measured, and the Voronoi Diagram with Barriers
(21}, where a point cannot be considered near a site
if there is an impenetrable barrier (e.g., a river)
between them. Current research topics include effi-
cient incremental modification of Voronoi diagrams
(when points are added or deleted, or when they
are in motion), and Voronoi interpolation.
Naturally, the Voronoi diagram also generalizes
to higher dimensions. In 3-D, it is the dual of the
Delaunay tetrahedralization. However, the compu-
tational resources required to compute and store
it rise exponentially with the dimensionality. The
maximum number of vertices of the Voronoi dia-
gram for a set of N points in d-dimensional space
is of the order of (d/2)IN%/2. More efficient algo-
rithms are now available to find the nearest neigh-
bors of query points in the high-dimensional vector
spaces found in pattern recognition applications.

4 Terrain Visibility

This section explores the application of geometric
algorithms to problems involving lines of sight be-
tween points on the earth’s surface. One might, for
instance, compute from which of several alternative
observation sites in San Francisco the largest por-
tion of the Bay would be visible. The most impor-
tant concept here is the visible region of a viewpoint,
or that part of the surface that can be “painted” by
a searchlight located at the viewpoint.

Geometric visibility is an abstraction based only
on the intersection with the terrain of the lines of

ooy o~ o
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sight emanating from each viewpoint. Surface at-
cributes, vegetation, atmospheric diffraction, and
light intensity are neglected. While visualization
shows the appearance of the terrain to an observer,
geometric visibility is concerned only with the ez-
tent visible from given observation points. The out-
put of a visualization program is intended for dis-
play for human assimilation, but the output of a
visibility program can be channeled to another pro-
gram for further calculation of visibility-based at-
tributes.

Digital elevation terrain models (DEMs) provide
an abstract representation (model) of the surface
of the earth by ignoring all aspects other than to-
pography. Visualization tools, on the other hand,
generate a display under some simplified assump-
tions (models) of surface reflectance, illumination,
light transmission, and viewing mechanism. For in-
stance, a surface may be visvalized using a finite
number of colors (that indicate land cover), lam-
bertian reflectance, point-source illumination, and
stereographic observation.

Computer-aided visualization of geometric con-
structs [58] facilitates solving, by inspection, many
problems of a geographic nature. Using geomet-
ric visibility, however, allows some of these prob-
lems to be solved by direct computation instead of
inspection. Examples include locating fire towers
and microwave transmitters and receivers; siting
power lines, pipelines, roads, and rest-stops; nav-
igation and orientation by reference to the hori-
zon; the identification of certain topographic fea-
tures; and, of course, a host of military emplace-
ment problems. Visibility mapping plays a central
role in scenic landscape assessment for establishing
jurisdictions, quantifying impacted populations, ex-
ploiting sources of energy, and planning transporta-
tion corridors [13].

Although the display algorithms that form the
core of computer graphics are based on geomet-
ric visibility, the application of geometric visibility
to terrain models is relatively new.® In addition
to computer graphics, spatial data processing and
topographic analysis, geometric visibility bears on
computational geometry, computer vision, and op-
erations research. References to original research
on the topics discussed below may be found in a
recent survey by the author (31].

6However, visibility in the plane, or polygon visibility, has
been a popular topic in computational geometry. Most of the
essential results can be found in [33, 34, 48].

4.1 Basic visibility concepts

For our purposes, a terrain is a topographic sur-
face whose elevation above a horizontal datum is a
single-valued function of z and y (no overhangs).
Two points on such a surface are said to be mutu-
ally visible if the line segment that joins them does
not pass below the surface. The intervisibility ofa
pair of points is a Boolean function of four scalar
variables, or a mapping from [R% x R?} to {0.1}.

Given a terrain model on which surface-points,
lines and regions can be specified, the intervisibility
of the various types of entities is represented by the
corresponding Boolean visibility function defined on
a product space of the entities. Among the nine
visibility functions that can be defined among point,
line, and region entities, the most useful are the
point-point and point-region visibility functions.

Any visibility function can be represented by a
visibility graph with arcs that link the nodes cor-
responding to intervisible entities. The visibility
graph for point-point visibility is straightforward
because any given point is either visible or invisible
from any other point. However, edges and regions
may be partially visible.

The point-point visibility among every pair of
data points can be represented by a Boolean ar-
ray of size N2, called the visibility matriz, or by the
corresponding visibility graph with N nodes and up
to N2 arcs, where N is the total number of data
points. The visibility matrix is symmetric (under
the assumption of zero observation height). The
row and column sums (projections) of the visibility
matrix correspond to the number of data points vis-
ible from each data point of the terrain. These vis-
ibility indices provide useful and relatively compact
information about the terrain. In a bowl-shaped
terrain, all points are intervisible; on a dome, none
are. The highest points don't necessarily have the
largest visibility indices {23}.

Point-region visibslity can be represented by a set
of two-dimensional visibility maps showing the ver-
tical projection on the horizontal datum of the visi-
ble and invisible parts of the terrain from a specified
viewpoint (Figure 6). A visibility map is required
for each observation point. In cartographic terms,
most viewshed maps, from turn-of-century military
conventions to the present, are binary choropleths
(shaded maps) of visible and invisible zones. The
earliest visibility maps were generated by the mil-
itary using a defilade approach consisting of radial
samples of vertical cross-sections derived from to-
pographic contours. The intersection points of the
lines of sight were projected back to the original
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Figure 6: A visibility map. The figure shows the horizontal projection of a terrain on a Delaunay-triangulated
irregular network. The dark areas are invisible from the viewpoint near the center, which is marked by a

small square.

map, and interpolated. Regions of visibility and in-
visibility may be nested, as in the case of a moun-

tain peak—that itself contains an invisible crater—

which is visible beyond a ridge.

4.2 Visibility Regions

As we have seen, a visibility map is a projection
onto the horizontal plane of the 3-D curves, (or line
segments) that separate visible and invisible regions
on a topographic surface. The boundaries of the re-
gions visible from a given viewpoint, projected onto
the z-y plane, may be divided into blocking seg-
ments and shadow segments. In a sectional view
(a vertical section through the viewpoint) of the
terrain, such as Figure 7, these segments are just
points on the baseline. From the perspective of the
viewpoint, a blocking segment represents the tran-
sition from a visible to an invisible region (again,

projected onto the z-y plane). An example is the
first ridge to the right of the viewpoint (projected
onto the baseline). A shadow segment represents
the transition from invisible to visible. In Figure 7,
there are two shadow segments, each corresponding
to the “shadow” of the ridge to its left.

Blocking segments typically correspond to ridges
and shoulder lines that cross a line of sight (i.e.,
a ray through the viewpoint). Shadow segments
correspond to a double projection: the orthogonal
(vertical) projection on the horizontal datum of the
central projection (from the viewpoint) of a ridge
(or shoulder line) onto the terrain on the far side of
the ridge.

The boundary of a connected region of visibility
or invisibility that does not contain the viewpoint
must consist of alternating chains of blocking seg-
ments and shadow segments. Any single chain con-
sisting only of blocking segments or only of shadow

i
i
f
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Figure 7: Sectional view: horizons. The viewpoint
has three odd right horizons (blocking edges) and
three even right horizons (shadow edges) including
the terrain boundary. Its only left horizon is the
terrain boundary. Terrain segments between odd
and even horizons are invisible from the viewpoint,
and segments between even and odd horizons are
visible.

segments must be a single-valued radial function
of the azimuth, and may therefore form a closed
curve only if it encloses the viewpoint. Further-
more, along any ray from the viewpoint on the vis-
ibility map, blocking and shadow segments must
strictly alternate. (But vertical edges and surfaces
tangent to a line of sight can give rise to anoma-
lous radial boundaries between visible and invisible

' regions.)

If the terrain model consists of planar approxi-
mations, such as a TIN, then the projections on the
horizontal datum of both the visible and invisible
regions of an observation point consist of polygo-
nal areas, and each blocking or shadow chain is a

piecewise-linear curve. Each blocking segment con-

sists of edges of the triangulation. An edge of the
triangulation may be part of a shadow segment only
if the plane that contains the corresponding terrain
edge and the viewpoint also contains a more proxi-
mal terrain edge.

The horizon is the set of ridges that corresponds
to the blocking segments most distal from the view-
point. It has been shown that the number of seg-
ments comprising the horizon is, in the worst case,
only slightly supralinear in the number of terrain
edges. The boundaries between visible and invisi-
ble regions are sometimes called odd and even order

Figure 8: Visibility calculations on a grid. This fig-
ure shows the redundancy of computing visibility
by following the line of sight from each observation
point to each target point. Most grid-based vis-
ibility programs eliminate computing some of the
redundant intersections of the lines of sight with
the edges of the grid cells.

horizons with respect to the given observation point
(Figure 7). '

In order to program visibility computations, two
questions must be laid at rest. The first question is:
What happens beyond the boundary of the terrain,
where we have no elevation information? We can
assume, for instance, that the terrain is bounded
by an infinitely high wall, or that it is surrounded
by a flat ocean. Alternatively, we can model the
curvature of the earth, which will ensure that visi-
bility from every point is limited, or else simply set
an arbitrary limit on the maximum distance from
which a point may be visible.

The second question concerns collinear points.
Are surfaces tangent to a line of sight visible? How
we settle these questions won’t have any signifi-
cant impact on the methods or conclusions that we
present, but computer implementation requires un-
ambiguous specifications.

A further assumption may be made with regard
to the height of the observer above ground. In most
instances, assuming ground-level observation is not
realistic. Assuming some observation height is es-
sential for some problems, but optional for others.

4.3 Computing visibility

The computation of the visibility matrix on a trian-
gulated irregular network is conceptually straight-
forward, unless one attempts to exploit the obvious
coherence in the visibility of neighboring viewpoints
(16). A simple algorithm for computing the com-
plete visibility map on a TIN can be visualized as
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Figure 9: Location of fire towers. Points a, b, and ¢ are candidate locations. The regions visible from
each point are shown below the terrain, followed by the ten elementary regions (generated by pairwise
intersections) that are each completely visible or completely invisible from all candidate points. Visible
elementary regions are marked with an z in the table on the right. In this simple example, it is clear that

points a and c are sufficient to see the entire terrain.

a searchlight, located at the viewpoint, which il-
luminates the terrain in a progressive outward spi-
ral. As the beam is raised, it encounters ridges that
cast shadows on the terrain farther from the light.
The endpoints of the ridge and shadow segments,
which form the boundary between the visible and
invisible regions, are recorded. Adjacent viewpoints
(vertices of the triangulation) are considered inter-

visible. With a TIN, a triangle which may cast

a shadow on another triangle must be processed
first.” The visible portion of each triangle is deter-
mined by projecting on it the dominant blocking
edges between the triangle and the viewpoint. New
blocking edges are introduced whenever a partially
or fully visible triangle is followed by an invisible
triangle. )

Grid-based algorithms all compute the intersec-
tion of radial lines of sight with the edges of the
grid cells that they intersect [42]. The difference
between algorithms lies mainly in the choice of rays
(Figure 8). There is little loss of accuracy if the
number of rays is reduced, provided that the points
are weighted to account for the dispersion of the
rays (23]

In the next several sections, we examine several

specific applications based on visibility computa-
tions.

"The necessary ordering property was mentioned in Sec-
tion 3. -

4.4 Observation points

A shortest watchtower algorithm determines the lo-
cation of the point with the lowest elevation above
the surface from which an entire polyhedral terrain
is visible [47]. Such a point must exist because
the terrain elevation is a single-valued function, and
therefore entirely visible from any point sufficiently
far above it. It is also possible to determine effi-
ciently whether any particular point is visible from
a single observation point on or above the surface
6]. '

Finding the location of the minimum set of obser-
vation points on the surface from which the entire
surface is visible (guard allocation) is much more
time consuming. Topographic applications include
the location of fire towers, artillery observers, and
radar sites. ‘

On a triangulated terrain, it is customary to re-
strict consideration to viewpoints located at ver-
tices of the triangulation. First, the area of in-
terest must be partitioned so that each partition
is either completely visible or completely invisible
from each viewpoint. The required partitions are
obtained by successive intersections of the visibility
maps. Now finding the smallest number of obser-
vation towers can be stated as a set-covering (or
facilities-location) problem of operations research.
An example showing a vertical section through the
terrain is shown in Figure 9. Variations of the prob-
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em include (27):

Find the area visible from a fixed set of obser-
vation points.

a.

b. Maximize the area visible from a fixed number
of observation points.

c. Given some cost function related to tower
height, locate the towers so as to see the en-
tire area at minimum cost.

d. Given some cost function related to tower
height, locate the towers that maximize the
area visible at a fixed cost. '

Landscape analysis is less easy to formalize, but
modern scenery analysis distinguishes between su-
perior, normal, and inferior positions relative to lo-
cal relief. Depending on the application, a com-
manding vista may be called a malitary crest or 8
panorama.

4.5 Line-of-sight communication

An obvious application of geometric visibility is the
location of microwave transceivers for telephone,
FM radio, television, and digital data networks. Of
course, a realistic solution must take into account

the height of the towers, the diffraction from inter-

mediate ridges, and the distance limit imposed by
the inverse-square law of electromagnetic propaga-
tion.

If the towers are restricted to the vertices of a
polygonal terrain, then the only information that is
required for line-of-sight computations is the visibil-
ity matrix or graph. Finding the minimum number
of relay towers necessary for line-of-sight transmis-
sion between two transceivers can be formulated as
a shortest-path search on the visibility graph. The
overall computation can be accelerated by comput-
ing dynamicaily only the portions of the visibility
graph that are required at any stage of the shortest-
path search.

Now consider the problem of locating relay tow-
ers to complete the line-of-sight network between
several transceivers (Figure 10). This problem can
be solved, under the restriction that the relay tow-
ers are located at vertices of the TIN. Here, in-
stead of computing the shortest path, one must find
the Minimum Steiner Tree (MStT) on the visibil-
ity graph. The MStT in this context is the acyclic
subgraph of the visibility graph, with the minimum
number of (unweighted) “intermediate” edges, that
includes all the transceivers. Because the overall
computational complexity is the product of the cost

Figure 10: Relay towers for line-of-sight transmit-
ters a and b. The z’s indicate the minimum num-
ber of transmitters. Although a sectional view is
shown here for ease of illustration, in actuality the
transceivers and the relays would not be in the same
vertical plane.

of computing the visibility graph on the TIN and
of the cost of computing the MStT on the visibil-
ity graph, the size of the underlying triangulation
must be reduced as much as possible. Then a con-
servative solution is obtained by adding the known
bound on the resulting elevation error to the heights
of the relay towers {17].

Finally, suppose that identical transmitters are
to be located so as to broadcast to a fixed set of re-
ceivers. Specifically, it is required to locate the min-
imum number of transmitters so that each receiver
can “see” at least one transmitter. This problem
is similar to the fire-tower problem, and can be re-
duced to set covering on the visibility matrix itself
(without intersecting any visibility maps).

4.6 Surface paths

The shortest path from one viewpoint to another
along the edges of a triangulated terrain, such that
none of the viewpoints traversed is visible from a
given observation point, is called a smuggler’s path.
A path on which every vertex is visible is a scenic
path. We can find such a path (if one exists) by
determining either the viewpoints that are visible
from the observation point, or those that are not,
and applying a standard shortest-path algorithm to
the edges that connect them.

Iwamura and his colleagues demonstrate a GIS
for interactive planning of scenic paths. Constraints
on the path include length, slope, and cost of con-
struction. For any observation point along a can-
didate path, both a “visual range map” (the repre-
sentation of a viewshed using radial lines from the
viewpoint) and a bird's-eye view of the terrain can
be displayed [25].
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4.7 Visibility invariants

Visibility functions do not define a terrain uniquely:
several different terrains may have the same visibil-
ity map. We call these terrains vistbility-equivalent.
To gain some insight into what characterizes this
equivalerice relation, consider the two sectional
views of visibility-equivalent terrains shown in Fig-
ure 11. For simplicity, the z-coordinates of the
points are uniformly spaced. Under these condi-
tions, the y-coordinates are subject to the following
equation: ) v
(a—y)/(ya—y3) = (ys —92)/(y3 —v2).
This equation defines the cross-ratio of four seg-
ments, which is invariant under a projective trans-
formation. As a corollary, the visibility functions
ona lé-D terrain are invariant under any projective
transformation, including translation and scaling of
coordinates, rotations, and affine transformations.
Tools for computing the intervisibility of selected
points have long been included in geographic infor-
mation systems but a recent attempt to compare
eight software packages for viewshed determination
led to inconsistent results. We expect, however,
that the next generation of GIS will offer a number
of robust visibility-related application programs.

b o - e - .

1

Figure 11: Two visibility-equivalent terrains in sec-
tion. The locations of shadow edges are identical for
every terrain whose elevations satisfy the projective
relationship (ya—y1)/(ya —v3) = (ys —¥2)/ (v3 —v2)
for each subset of five data points. For example, the
shadow edge @ of the observation point P has the
same r-coordinate in both terrains. Consequently
the intervisibility of any pair of points can be read-
ily determined from the locations of the horizons.

5 Map Projections
(Geometry, Geography, and
Geodesy)

When the extent of the database under considera.
tion is larger than a city or county, we must allow for
the sphericity of the planet. Although for interna]
computer processing a three-dimensional model for
locating objects in terms of spherical coordinates is
perfectly adequate, for display and mapping pur-
poses there is no satisfactory alternative to project-
ing the earth’s surface on a 2-D plane.

The ideal projection would preserve relative dis-
tances, angles, and areas, but no projection can pre-
serve all of these. The distortions increase with the
solid angle subtended at the center of the earth.
No projection can show scale correctly throughout
the map, but there are usually one or more lines
on the map where scale remains true. Eguidistant
projections show true scale between one or two se-
lected points and every other point. Azimuthal pro-
Jections, which preserve the direction of all points
with respect to the center, are usually projections
on a tangent plane.

The most common mapping projections are the
Lambert Conformal and the Transverse Mercator.
Both of these are conformal projections, and there-
fore preserve local shape. The former projects the
earth’s surface on a cone centered about the po-
lar axis with its surface tangent or secant to the
extent under consideration. It is suited to regions
elongated east to west, like Nepal. Distortions can
be minimized by letting the cone cut the surface
of the sphere at two parallel circles, and tilting its
axis away from that of the earth. The Transverse
Mercator is based on a cylinder with its axis per-
pendicular to the polar axis and its surface tangent
to a meridian (longitude) near the center of the pro-
jected area. It is suitable for regions whose major
dimension is north and south, like Norway. The
cylinder of the Oblique Mercator touches the earth’s
surface along a great circle other than the Equa-
tor. While the transformation from Transverse to
Oblique is easy for a sphere, it is more difficult for
an ellipsoidal model of the Earth. As shown in Fig-
ure 12, both cone and cylinder are developed into
a flat surface by cutting along a single line segment
(51].

State Plane Coordinates (used, for example, by
Roads departments) consist of a rectilinear grid de-
fined on a map projection. The origin is placed
outside the extent, hence locations can be identified

|3
1
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Regular Cylindrical

Transverse Cylindrical

Regular Conic

Polar Azimuthal
(plane)

Oblique Azimethal
(plane)

Figure 12: Projection of the earth on a cylinder, a cone, or a plane. For some maps, a central projection is
used, but in most cases more complex mappings are necessary to obtain desirable properties.
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entirely by pairs of positive integers. In large states,
the state plane coordinates are based on more than
one projection.

The newest projections are designed for satel-
lite mapping. Since 1972 several mapping satel-
lites have been launched into nearly circular sun-
synchronous orbits inclined at 99 degrees to the
Equator at about 919 km altitude. Because of the
double motion of the satellite and the earth’s ro-
tation, these satellites track a continuous S-shaped
swath (about 185 kms in width). In the case of
Landsat, the course does not return to the same
point for 251 orbits (18 days). For mapping, a
“dynamic” map projection on which the ground-
track remains true-to-scale is required. The Space
Oblique Mercator (SOM) projection was derived for
this purpose from the Hotine Oblique Mercator pro-
jection (which Hotine called “rectified skew ortho-
morphic”) [50].

This new projection can be adapted to orbits of
any eccentricity and inclination. The central line
of the SOM closely follows the groundtrack of the
satellite, which is not a great circle but a path of
constantly changing curvature. Figure 13 shows
two orbits of the SOM projection. The forward and
backward projection formulas, which require iter-
ation and numerical integration, can be found in
[50]. Prior to the introduction of these projections,
the preparation of photo-mosaics for mapping pur-
poses from satellite images was more an art than a
science.

The shape of the earth is approximated by an
oblate ellipsoid of revolution. The difference of
1/300th between the polar and equatorial radius
must be taken into account in maps at a scale of
1:100,000 or larger. Furthermore, slightly different
ellipsoidal surfaces are required to provide the best
fit at different parts of the globe. Therefore the
ellipsoid is used with an “initial point” reference lo-
cation to provide the sea-level datum for mapping.
The Clarke ellipsoid, used for the 1927 North Amer-
ican Datum, was supplanted in the 1983 North
American Datum by the World Geodetic System el-
lipsoid. The new datum is based on satellite track-
ing data.

The distortions in distance, relative angle, and
area can be readily computed and plotted for
the simpler projections under the assumption of a
spherical earth. They can also be studied by direct
measurement on existing maps, making use of the
known locations of the intersections of latitudes and
longitude lines or ticks.

6 Ranging Further

Here we briefly list some operations that are com-
monly encountered in processing GIS queries and
provide references for additional information.

6.1 Line intersections

Given a set of line segments in the plane, described
by their endpoint coordinates, it is often of interest
to find and report the location of every intersection
among them. A number of fast techniques exist for
accomplishing this, including line-sweep methods
based on presorting the segments in one dimension
(2, 3, 40}, and uniform-grid techniques that presort
the segments in both dimensions (22}. Polygon over-
lay is a generalization of line intersections (32]. As-
sume that one map shows diverse agricultural land
use in a state, while another shows county bound-
aries. The task is to determine agricultural land
use in each county. A special application of poly-
gon intersection is polygon-to-grid transformation.
This is useful, for instance, for transforming dig-
itized soil maps into a cellular data structure for
simpler query processing.

6.2 Proximity

Not all proximity problems are solved most effi-
ciently by Voronoi diagrams. For instance, finding
the closest, or farthest, pair of points among a set of
points requires a specialized algorithm [40]. Short-
est route problems, when the path is constrained to

* a surface, or to some graph imbedded in the surface,

form a large class of their own [26].

6.3 Curves

Most GIS approximate curves by a sequence of
straight-line segments because few geographic fea-
tures can be described by simple mathematical
curves. Irregular curves can, however, be approxi-
mated by splines of various families. Unfortunately,
the economies of such representations are usually
offset by the increased complexity of the processing
algorithms. Currently, geometric curves are used
only in applications where planar map projections
are inadequate, as in long-distance navigation.

6.4 3-D GIS

While most GIS address essentially two-
dimensional problems, in geology, mining, and
some oceanographic problems the 3-D structure
is essential. Rather than develop truly 3-D data

—
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the groundtrack remains true to scale.

structures, a common approach is to consider
parallel layers [41].

6.5 Interpolation

The simplest method to interpolate values defined
on a grid is bilinear interpolation. Higher-order in-
terpolation algorithms take into account more than
the four immediate neighbors (eight in 3-D) of the
query point. Triangulated surfaces allow linear in-
terpolation. However, the resulting surfaces are
not smooth, in the sense that they have disconti-
nuities in their derivatives at the edges of the cells.
When the data points are not uniformly distributed,
Voronoi interpolation allows consideration of values
at additional data points.

6.6 Physiographic features

The literature on landforms is remarkably short
on algorithmic definitions. Most attempts to au-
tomate physiographic feature extraction have been'
based on discrete approximations to derivatives of
the surface [12, 37]. These features are generally
quite local and highly scale-sensitive, whereas the
significance of terrain features depends on their size
and location relative to similar features in the en-
tire area. Metrics based on geometric visibility au-
tomatically take into account global relations.

Figure 13: Two orbits of the Space Oblique Mercator projection, shown for Landsat. A narrow band along

Some examples of geometric visibility applied to
topographic features are the following. The visi-
bility region of significant peaks tends to be large,
and includes most of the visibility regions of lesser
peaks. Significant peaks also have many blocking
segments and multiply-connected visible regions,
which distinguishes them from points in broad val-
leys that also have high visibility. Ridges block
the horizons of many observation points. Points
that are intervisible are in the same valley, oth-
erwise they are separated by ridges. In pits and
valleys, the prospect is singly-connected and tends
to change gradually. Even if landforms cannot
be determined entirely according to visibility crite-
ria, these may generate useful measures for ranking
them.

6.7 Watersheds

The study of watersheds, originated more than a
century ago by James Clerk Maxwell, illustrates
a mathematically advanced aspect of the study
of physiography. Critical points (peaks, pits, and
passes), elevation contours and slope lines, ridge
lines and course lines, and dales (a dale is a dis-
trict whose slope lines run to the same pit) all have
precise mathematical definitions in terms of partial
derivatives of the terrain function [30]. Elaborate
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analyses and simulations are routinely carried out
in planning dams and canals to mitigate flooding.

6.8 Navigation

Automated path planning (collision-free paths,
shortest paths, cheapest paths, safest paths) is al-
ready an important aspect of robotics. Prelim-
inary gross planning typically takes into account
fixed aspects of the robot’s environment, while fine
planning copes with unpredicted obstacles, such as
other vehicles, that may be sensed by the robot in
motion. As the range of autonomous vehicleg eX-
pands, path planning may become a routine com-
ponent of GIS.

Horizons do provide an important clue for naviga-
tion in mountainous terrain. Discontinuities in vis-
ibility can be readily determined under poor condi-
tions by a variety of sensors, and matched to stored
or computed horizons to determine the location of
the observer. Discernible terrain features guide air-
borne military vehicles [55]. The use of horizon
lines for autonomous navigation by a Mars Rover
has been considered.

6.9 Robust computation

There are two aspects to robust computation. One
is the treatment of pathological cases. In geography,
one cannot simply assume that points are in general
positions and that special cases will not arise. The
presence of collinear and co-circular points, exactly
vertical or horizontal lines, duplicate entities, and
so forth simply cannot be allowed to yield anoma-
lous results or disrupt processing [20].

The second aspect is the accumulation of round-
off error. Even if floating-point arithmetic is used,
the finite word-length of computers allows only
signed-integer computation, and overflow and un-
derflow will result in arithmetic error. Consider,
for instance, the intersection of two straight-line
segments defined by endpoints placed on a grid.
This grid corresponds to all the z and y coordinates
that can be represented in a particular computer (if
floating point arithmetic is used, then the size of
the grid-cells changes in logarithmic increments).
The intersection of the two line segments will not,
in general, lie on the grid, and will thus have to be
approximated by the coordinates of the nearest grid
point. Therefore a straightforward arithmetic check
for collinearity on the two endpoints of one of the
segments and the computed point of intersection,
will return an incorrect negative answer.

Arithmetic precision problems of this type can

Geometry at Work

be circumvented by rational arithmetic [57]. Hoy,.
ever, on each successive intersection computatioy
the number of digits required in the numerator ami
the denominator tends to triple. An alternative, i
the above problem, is to perturb the endpoints of
the line segments in such a way that the intersectigy
will fall on the grid. This can be accomplished wit},
a method based on continued fractions, and resy]g
in a trade-off between positional accuracy and the
preservation of collinearity relations [28]. A third
method is demonstrated through the construction
of a million-cell Voronoi diagram in [54}. -

Research on robust algorithms is booming be. -

cause current methods often introduce slivered re-
gions, region boundaries that double back on them-
selves or leak, and towns that are accidentally
shifted from one bank of a river to the other.
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