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Analytical Results on Style-constrained Bayesian
Classification of Pattern Fields

Sriharsha Veeramachaneni and George Nagy, Fellow, IEEE

Abstract— We formalize the notion of style context, which
accounts for the increased accuracy of the field classifiers re-
ported in this journal recently. We argue that style context forms
the basis of all order-independent field classification schemes.
We distinguish between intra-class style, which underlies most
adaptive classifiers, and inter-class style, which is a manifestation
of inter-pattern dependence between the features of the patterns
of a field. We show how style-constrained classifiers can be
optimized either for field error (useful for short fields like zip
codes) or for singlet error (for long fields, like business letters).
We derive bounds on the reduction of error rate with field length
and show that the error rate of the optimal style-constrained field
classifier converges asymptotically to the error rate of a style-
aware Bayesian singlet classifier.

Index Terms— style context, field classification, adaptive clas-
sification, Bayesian classification

I. INTRODUCTION AND MOTIVATION

In statistical pattern recognition, it is often assumed that
the test patterns are independently and identically distributed
(i.i.d.), therefore they are classified one at a time. One con-
sequence of the i.i.d. assumption is that the labels assigned
to the singlets in a test set are independent of the order in
which the test singlets are presented to the classifier. How-
ever, classifying groups (or fields) of patterns is often more
accurate than classifying single patterns (or singlets) because
of interpattern statistical dependence or context. We defined
in [1] and [2] a particular kind of inter-pattern dependence,
called style context, which we exploited in field classification.
We show below that such dependence also results in identical
classification of singlets in the field independent of their order
(unlike, for example, morphological and lexical context in
Optical Character Recognition (OCR) and Automated Speech
Recognition (ASR)).

The inter-pattern dependence among the patterns in the test
field, induced by the fact that they belong to the same mixture
component, is called style context. In many applications style
context is the consequence of each group (field) of patterns to
be recognized having been generated by one of several sources,
as exemplified in Figure 1.

Style consistency forms the basis for all adaptive classi-
fication, i.e., order-independent classifiers that modify their
decision regions by exploiting the statistics of the test set. For
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Fig. 1. A hypothetical example with style induced dependence – ‘17’ written
by two writers, 1 and 2. We can achieve higher accuracy by classifying a group
of patterns from the same writer simultaneously than classifying the singlets
in the group independently. Note that the label of the writer of the test field
is not needed to improve the accuracy.

instance, clustering using the expectation-maximization or K-
means algorithms exploits some assumed similarity of patterns
from the same class. The necessary conditions occur frequently
in OCR and ASR, but so far adaptive methods have exploited
only the consistency of patterns of the same class generated
by a given source. In terms of style, we can define adaptation
succintly as style-constrained field classification where the
field encompasses the entire test set.

Nagy suggested exploiting ”spatial context” in [3] without
any specific notion how this was to be done. The word ”style”
came to be used with similar meaning four or five years
later. We call algorithms developed specifically under the
three assumptions listed in the next section style-constrained
or style-consistent classification. Discrete-style field classifiers
were demonstrated using templates in [4], on simulated Gaus-
sian distributions in [5], and on printed digits in [6]. We
reported application of a continuous-style quadratic classifier
to printed and hand-printed digits in [7], [8]. Sarkar and
Veeramachaneni also derived fast, sub-optimal approximations
to the optimal style classifiers. An ”adaptive” (within-class
style) classifier was presented in [9]. We proposed in [10]
some conjectures on the nature of class and style distributions
in high-dimensional feature space, with supportive evidence
on hand-printed characters. Most of this material, with detailed
derivation of the classifier formulas, was assembled in three
journal papers [11], [1], [2] which also include additional
experimental results. In [12] we differentiated, by means of
Bayesian networks (directed graphical models), style context
from several other kinds of context that occur in OCR. Nagy
reviewed progress in adaptive character recognition in [13],
almost forty years after his first attempts in that direction [14].
Adaptation in a commercial OCR engine was reported in [15],
but no commercial exploitation of inter-class style is known
to us.

Our objective here is the formalization of the conditions
where style context is beneficial, and of the equations that
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govern its exploitation. We investigate four salient aspects
of style-constrained classification: (1) order independence,
(2) intra-class vs. inter-class style, (3) singlet vs. field error
optimization, and (4) dependence of error rate on field length.

Order independence distinguishes style context from lin-
guistic context. The definitions of intra-class and inter-class
style clarify the difference between conventional adaptive clas-
sifiers and the broader notion of style-constrained classifiers.
Since the traditional assumption (in Bayesian classification)
of class-conditional independence between the features of
different patterns is dispensed with, we can build classifiers
optimized for either the field error rate or the singlet error
rate. In addition to showing that the error rate of a (Bayesian)
style-constrained classifier asymptotically converges to that of
the optimal style-aware classifier, our bound provides insight
into the properties of the classification problem that influence
the reduction in error rate with style-constrained classification.

II. NOTATION AND ASSUMPTIONS

For simplicity we restrict our notation and discussion to
two-class problems. We consider the problem of classifying
a field-feature vector y = (x1, . . . ,xL) (each xi represents
d feature measurements for one of L patterns in the field)
produced in one style s ∈ S. The field feature vector
is an instance of the random vector y = (x1, . . . ,xL).
Let C = {A,B} be the set of singlet-class labels. Let ci

represent the class of the ith pattern of the field1. We make
the following assumptions on the style, class and feature
distributions.

1) p(c1, c2, . . . , cL) = p(c1)p(c2) . . . p(cL). That is, there
is no higher order linguistic dependence2 than the prior
class probabilities p(A) and p(B) = 1 − p(A).

2) p(A|s) = p(A) ∀s ∈ S. The prior class probabilities are
style-independent. For multi-writer word recognition,
this assumption states that the handwriting style of a
writer does not influence his or her vocabulary.

3) p(y| c1, c2, . . . , cL, s) =
∏L

i=1 p(xi| ci, s) ∀s ∈ S.
The features of each pattern in the field are class-
conditionally independent of the features of every other
pattern in the same field. For multi-font word recogni-
tion, this assumption states that for the word ABBA in
a particular font, the noise in the first A is independent
of the noise in the second one as well as of the noise in
the Bs.

III. ORDER INDEPENDENCE

A consequence of our assumptions is order independence,
which is central to the idea of exchangeability in modern
Bayesian statistics. An infinite sequence of random variables
is finitely exchangeable if the joint distribution of any finite
subset of them is equal to that of any permutation of the
subset. The theorem of De Finetti states that the probability
distribution of a finitely exchangeable sequence must be a

1If the fifth pattern of the field is a B, then it is denoted c5 = B.
2This assumption is desirable for exploring style context independently

from linguistic context which is already widely used in classification.

(possibly uncountably infinite) mixture of probability distribu-
tions of i.i.d. sequences [16]. In other words the sequence is
conditionally i.i.d. We render this latent conditioning variable
explicit and call it style.

Result 1: Under our assumptions, for any permutation
(i1, . . . , iL) of (1, . . . , L)

p(x1 = x1, . . . ,xl = xL| c1 = c1, . . . , cL = cL)
= p(x1 = xi1 , . . . ,xL = xiL

| c1 = ci1 , . . . , c
L = ciL

)

Proof Outline: The left hand side can be written as

p(x1, . . . ,xL| c1 = c1, . . . , cL = cL)

=
∑
s∈S

p(x1, . . . ,xL, s| c1 = c1, . . . , cL = cL)

The result follows straightforwardly from assumptions 2 and
3 above.

This result implies that the probability of a pattern field
given a field class is equal to the probability of any permutation
of the pattern field given the field class which is the same
permutation of the original field class. Note that such order
independence does not hold when there is class-label depen-
dence due to linguistic context or sequence-induced inter-
pattern feature dependence due to ligatures or co-articulation.
Conversely, the assumption of Markov dependence is not
appropriate to model the feature dependence arising due to
a common source. We shall make further use of order inde-
pendence for deriving a bound for the error rate as a function
of field length.

IV. INTRA-CLASS AND INTER-CLASS STYLE CONTEXT

As reported in [1], style constrained classifiers trade-off loss
of accuracy on same-class fields against gain on mixed-class
fields. We therefore define two kinds of style context: intra-
class style and inter-class style. Intra-class style is present
when there is statistical dependence between patterns of the
same class in a field, i.e., there is at least one class c ∈ C such
that

p(x1,x2|c, c) �= p(x1|c)p(x2|c) (1)

Inter-class style is defined as the statistical dependence
between patterns of different classes in the same field. That
is, there exist two different classes ci, cj ∈ C such that

p(x1,x2|ci, cj) �= p(x1|ci)p(x2|cj) (2)

The above definitions are only for L = 2, but they general-
ize to longer fields. Class-conditional statistical dependence
between triples of different-class patterns may arise even
if all pairs are class-conditionally independent. This cannot
happen with same-class patterns, because dependence between
any three patterns from the same class in a field implies
dependence between all pairs. For simplicity we shall avoid
considering any egregious higher-order dependence without
lower-order dependence.
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Result 2: The existence of inter-class style context implies
intra-class style context

Proof Outline: If there is no intra-class style context, then
for every class, the class-conditional distributions are identical
for all styles. This implies that inter-class style is absent as
well.

As mentioned, adaptive classifiers reported to date exploit
only intra-class style context. They use the patterns in the
test set to refine the estimates of the underlying distributions
via clustering, expectation maximization or decision-directed
estimation, and the patterns in the training set to assign labels
to these distributions. The essential idea is crystallized in [17],
[18].

Adaptation can compensate both for an insufficient num-
ber of training samples and for non-representative training
sets, but classifiers that use only intra-class style context
are clearly suboptimal for data that also exhibit inter-style
context. As shown experimentally in [11], exploiting inter-
class style can increase the accuracy over using only intra-class
style, especially on short fields.We now examine the essential
characteristics of field classifiers that exploit the existing inter-
class style context.

V. STYLE-CONSTRAINED CLASSIFIERS

Most of the experiments we reported earlier were based
on Gaussian class-and-style-conditional feature distributions.
Here we take a broader view to examine issues common
to all style-constrained classifiers. We formulate criteria for
singlet-error optimized and field-error optimized classification,
propose an efficient approximation, and define, for analytical
purposes, an abstract classifier.

As is customary, we assume that the cost of all inter-class
confusions is the same, and therefore we wish to minimize the
error rate. When classifying fields, however, we can minimize
either the number of misclassified fields (a field is considered
misclassified if any pattern in the field is misclassified), or the
total number of misclassified patterns, regardless of how the
errors are distributed among fields. In operational applications
with short fields (bank check amounts, ZIP codes) field error
rate is paramount, because regardless of the number of errors,
after proofreading it is more convenient to re-enter the whole
field. However, in longer fields, like a business letter, the
number of singlet errors, which will be individually corrected,
must be minimized. We note also that the field error rate
increases with field length, which must be taken into account
in experimental comparisons with different field lengths [2].

When we classify field-patterns into field-classes, the Bayes
decision rule using the zero-one loss function minimizes the
field error rate: the classification decision that minimizes field
error rate for the test field y = (x1, . . . ,xL) is, as in [1]

ĉ = argmax
c∈CL

p(c|y) = argmax
c∈CL

∑
s∈S

p(y| c, s)p(c)p(s)

(3)

We call this field classifier FOPT (for Field error OPTimized).

To minimize the singlet error rate we construct the so-called
SOPT classifier (for Singlet error OPTimized), which is a
Bayes decision rule with the Hamming distance loss function
between the true and assigned field class labels. The SOPT
classifier assigns the label ĉl to xl, the lth pattern in the field
y = (x1, . . . ,xL), where

ĉl = argmax
c∈C

p(cl = c|x1, . . . ,xL)

= argmax
c∈C

∑
s

p(c|xl, s)p(s|x1, . . . ,xL) (4)

where

p(s|x1, . . . ,xL) =
p(x1, . . . ,xL|s)p(s)∑
s p(x1, . . . ,xL|s)p(s)

=
p(s)

∏L
l=1 p(xl|s)∑

s p(s)
∏L

l=1 p(xl|s)
(5)

These optimal style classifiers can be computationally de-
manding. The FOPT classifier requires the computation of
posterior probabilities for all field classes, the number of which
increases exponentially with field length. Both the FOPT
and SOPT classifiers require the averaging of posterior class
probabilities over all styles.

The performance of the optimal field classifiers can be
approximated by that of a style-first (SF) classifier3 which
first recognizes the style of the test field and then uses the
appropriate style-conditional maximum a posteriori classifier.
The style-first classifier assigns the label ĉl to xl, the lth

pattern in the field according to

ĉl = argmax
c∈C

p(c|xl, ŝ) (6)

where ŝ = argmax
s

p(s|y) = argmax
s

p(s|x1, . . . ,xL)

= argmax
s

{p(x1, . . . ,xL| s)p(s)} (7)

To help us obtain bounds on the error rate, we now define
a new style-constrained classifier called the GIBBS classi-
fier4. For the test field (x1,x2, . . . ,xL), the GIBBS classifier
chooses a style s randomly according to the posterior distri-
bution of the styles given the test field p(s|x1,x2, . . . ,xL)
and then classifies each singlet xl in the field according to the
style-conditional distributions of style s. The GIBBS classifier
assigns the label ĉl to xl, the lth pattern in the field according
to

ĉl = argmax
c∈C

p(c|xl, ŝ) (8)

where ŝ ∼ p(s|y) = p(s|x1, . . . ,xL) (9)

From the above classification functions and Result 1, it
is clear that all the above classifiers classify a test field
order-independently, i.e., every singlet in the field is classified
indepedently of its position in the field. Note that the difference
between the SOPT, SF and GIBBS classifiers stems from
their different usage of the posterior style distribution. By

3A different suboptimal approximation is derived in [5].
4Our GIBBS classifier is in principle similar to its namesake in [19], but we

use it in a different context. Here the singlet being classified also plays a part
in altering the posterior distribution according to which the style is sampled.
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construction the singlet error rate of the SOPT classifier is
lower than that of the SF or the GIBBS classifier.

Although we have so far implied that there is a finite
number of discrete styles, it may sometimes be advantageous
to consider a continuous distribution of styles. In handwriting,
a training set may contain a large number of writers, but it is
unlikely that any writers in the test set will duplicate the pat-
terns of some writer in the training set. For example, in [2], we
assumed that the class-conditional distributions of every writer
are identical, but their means vary continuously. We showed
that if both distributions are Gaussian, then all the patterns
of a class will be distributed according to a single Gaussian
distribution obtained by convolving the distribution of the style
means with the class-and-style-conditional distribution.

VI. ERROR RATE VERSUS FIELD LENGTH

We now present some results on the error rate of the SOPT
style-constrained classifier. Since, due to order independence,
the singlet error rate is independent of the position of the
singlet in the field, the probability of singlet error of the SOPT
classifier (cf. Equation 4) acting on fields of length L is

pL(e) =
∫
x1...xL

min
c∈C

{p(x1, . . . ,xL, c1 = c)} (10)

=
∫
x1...xL

min
c∈C

{
∑

s

p(c|x1, s)p(x1, . . . ,xL| s)p(s)}

Result 3: pL(e) is a monotonically non-increasing function
of L.

Proof Outline: Follows from Equation 10 and the in-
equality

∫
x

min{a(x), b(x)} ≤ min{∫
x

a(x),
∫

x
b(x)}

In particular, the error rate of an optimal style-constrained
field classifier for any field length is no greater than the error
rate of a singlet classifier. We show later that except under
pathological conditions, it is less.

We can calculate the probability of singlet error of a
classifier realizable only if the styles are known (called style-
aware classifier). It is given by

p�(e) =
∑

s

p(s)
∫
x

min
c∈C

{p(x, c = c| s)}

=
∑

s

p(s)
∫
x

min
c∈C

{p(c = c|x, s)}p(x) (11)

�
∑

s

p(s)
∫
x

p�(e|x, s)p(x) (12)

Result 4: pL(e) ≥ p�(e) ∀L.

Proof Outline: Follows from Equation 10, Equation 11,
and the inequality∑

x min{a(x), b(x)} ≤ min{∑x a(x),
∑

x b(x)}

That is, the probability of error for the style-constrained
field classifier is never lower than that of the style-aware

classifier. Also, we note that limL→∞ pL(e)
�
= p∞(e) is not

always equal to p�(e).

Result 5: p∞(e) = p�(e), the style-aware error rate, if the
styles are distinguishable.

Proof Outline: Let the test field be (x1,x2, . . . ,xL).
From Equation 4, the label c�

l assigned by the SOPT classifier
to xl is

ĉl = argmax
c∈C

∑
s

p(cl = c|xl, s)p(s|x1, . . . ,xL) (13)

If the styles are statistically distinguishable, i.e., for two
distinct styles s1 and s2, p(x| s1) is “different” from p(x| s2),
then we have

lim
L→∞

p(s|x1, . . . ,xL) = δ(s, s�) (14)

where s� is the identity of the style that generated the field
and δ(.) is the Kronecker delta function. Thus, we have from
Equations 13 and 14 that

ĉl = argmax
c∈C

∑
s

p(cl = c|xl, s)δ(s, s�)

= argmax
c∈C

p(cl = c|xl, s
�)

Thus, when the styles are distinguishable, a style-
constrained field classifier optimized for character error rate
converges to the style-aware classifier asymptotically with the
length of the test field. Consequently the error rate of the SOPT
classifier converges to p�(e).

In the Appendix we derive an upper bound on the error rate
of the SOPT classifier by bounding the error rate of the GIBBS
classifier. The upper bound is related to the error rate of the
style-aware classifier (i.e., the lowest achievable error rate), the
pairwise difference of style-specific classifiers and the pairwise
difference in style-conditional feature distributions. Let the
style-aware classifier for style si ∈ S be denoted φi(.).

Result 6:

pL(e) ≤ pGIBBS
L (e) ≤ p�(e) + 2

∑
i�=j

μ(si, sj)ν(si, sj)(L−1)

(15)
where p�(e) is the error rate when the style of the field is
known, and

μ(si, sj)

=
∫

φj(x) �=φi(x)

(1 − p�(e|x, si) − p�(e|x, sj)) . . .

. . .
√

p(x, si)p(x, sj)dx

depends on the difference in the style-conditional classification
boundaries of styles si and sj in the singlet feature space, and

ν(si, sj) =
∫
x

√
p(x|si)p(x|sj)

is a measure of the difference between the style-conditional
singlet feature distributions of si and sj . In addition,
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Fig. 2. Subfigure I shows the style-and-class-conditional densities. Subfigures II and III show the plots of error rate versus the field length. In both cases
p�(e) = 15.87%.

ν(si, sj) < 1 when the style-conditional distributions are
different, implying that the bound approaches p�(e) asymp-
totically with L.

In Figure 2 we show the singlet error rates obtained by
simulations for various classifiers along with the bound as
a function of the field length L. We use synthetic data to
illustrate our analytical results for Bayesian classification. We
cannot compute the bound exactly for real data because we
can only estimate the true distributions. The simulations were
conducted for Gaussian style-and-class-conditional feature dis-
tributions given by (see Subfigure I)

(x|A, s1) ∼ N(0, 1), (x|A, s2) ∼ N(ds, 1),

(x|B, s1) ∼ N(dc, 1) and (x|B, s2) ∼ N(dc + ds, 1).

Subfigures II and III show the error rates for the SOPT, SF
and the GIBBS classifiers, along with the bound and the error
rate of the style-aware classifier for two choices of dc and ds

as a function of the field length. Note that, because in III the
styles are more distinguishable than in II, the error rates of the
classifiers (and the bound) approach p�(e) more rapidly with
increasing field length.

The presence of style dependence does not necessarily
decrease the Bayes Risk achievable by field classification.
Equation 15 helps us to intuit situations where there is style
dependence which does not translate to a decrease in error rate.
When does this happen? In situations where a) the singlet error
rate or the error rate in classifying the style of a singlet is zero,
or b) the style-specific classifiers are identical across styles, or
c) the error rate of the style-aware classifier is 50%, or d) the
style-conditional singlet feature distributions are identical. In
the first three situations the error rate of the singlet classifier
already matches the accuracy of the style-aware classifier,
and in the last case, although the error rate of the style-
aware classifier may be lower, it cannot be achieved by field
classification because the styles are not distinguishable. These
situations are not representative of most application domains.

VII. SUMMARY

The decrease in error rate due to style-constrained clas-
sification has already been amply demonstrated experimen-
tally. We believe that the analytical findings communicated
above provide guidance for further development of field
classifiers based on less restrictive assumptions. We explored
the connection between style-constrained classification and
exchangeability. We defined intra-class and inter-class style,
and showed how the commonly accepted notion of adaptive
classification fits into the style framework. Even though it
is difficult to find situations where intra-class style occurs
without inter-class style, we drew a distinction between them
because many adaptive classification algorithms exploit only
intra-class style. Only recently has attention been focused
on inter-class style. We gave a general formulation for style
classification and showed that minimizing the singlet error
rate and field error rate require different algorithms and have
different applications. We defined an abstract Gibbs classifier,
by means of which we investigated the decrease in error
rate with field length. We proved that when the styles are
distinguishable, the error rate of the optimal style-constrained
classifier converges asymptotically to that of the style-aware
Bayes singlet classifier.

APPENDIX I
PROOF OUTLINE FOR RESULT 6

Proof Outline: Let us consider the singlet error rate
of the GIBBS classifier, say on x1, from the test field y =
(x1,x2, . . . ,xL) generated in style si. The probability of error
is the sum, over all j, of the probability of choosing a style sj

times the probability of misclassifying x1 by style sj , given
that it was generated in si. Recall that the label assigned to x1

using the classification boundaries for style si ∈ S by φi(x1).

pGIBBS
L (e|y, si) =

∑
j

p(sj |y)p(φj(x1)|x1, si)

where φj(x1) denotes that the style-conditional classifier of
sj makes an error on x1.
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Now (for a two class problem) if φj(x1) = φi(x1),
i.e., if both styles si and sj classify x1 identically,
p(φj(x1)|x1, si) = p�(e|x1, si) and if φj(x1) �= φi(x1), then
p(φj(x1)|x1, si) = 1 − p�(e|x1, si). Therefore

pGIBBS
L (e|y, si)

=
∑

j

p(sj |y) . . .

{p�(e|x1, si) + I(φj(x1) �= φi(x1))(1 − 2p�(e|x1, si))}
where I(.) is the indicator function, which is 1 when its
argument is true, and 0 otherwise.

Removing the conditioning on the field and the style, the
error rate of the GIBBS classifier is

pGIBBS
L (e)

=
∫
y

∑
i

∑
j

p(si|y)p(sj |y) . . .

. . . {p�(e|x1, si) + I(φj(x1) �= φi(x1)) . . .

. . . (1 − 2p�(e|x1, si))}p(y)

= p�(e) +
∫
y

∑
i

∑
j

p(si|y)p(sj |y) . . .

. . . I(φj(x1) �= φi(x1))(1 − 2p�(e|x1, si))p(y)

Now since p(si|y)p(sj |y) ≤ min{p(si|y), p(sj |y)}, we
have

pGIBBS
L (e) − p�(e)

≤
∑

i

∑
j

∫
x1

I(φj(x1) �= φi(x1))(1 − 2p�(e|x1, si)) . . .

. . .

∫
x2...xL

min{p(si,y), p(sj ,y)}

=
∑

i

∑
j

∫
x1

I(φj(x1) �= φi(x1))(1 − 2p�(e|x1, si)) . . .

. . .

∫
x2...xL

min{p(si,x1)p(x2 . . . ,xL|si), . . .

. . . p(sj ,x1)p(x2 . . . ,xL|sj)}
=

∑
i

∑
j

∫
x1

I(φj(x1) �= φi(x1))(1 − 2p�(e|x1, si)) . . .

. . .

∫
x2...xL

min{p(si,x1)p(x2|si) . . . p(xL|si), . . .

. . . p(sj ,x1)p(x2|sj) . . . p(xL|sj)}
≤

∑
i

∑
j

∫
x1

I(φj(x1) �= φi(x1))(1 − 2p�(e|x1, si)) . . .

√
p(x1, si)p(x1, sj)

{∫
x

√
p(x|si)p(x|sj)

}L−1

= 2
∑
i�=j

∫
x

I(φj(x1) �= φi(x1)) . . .

. . . (1 − p�(e|x, si) − p�(e|x, sj))
√

p(x, si)p(x, sj) . . .

. . .

{∫
x

√
p(x|si)p(x|sj)

}L−1

= 2
∑
i�=j

μ(si, sj)ν(si, sj)(L−1)

The fact that ν(si, sj) < 1, if the styles are distinguishable,
follows from the Cauchy-Schwarz inequality.
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