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Abstract   Document analysis tasks for which representative 
labeled training samples are available have been largely 
solved. The next frontier is coping with hitherto unseen 
formats, unusual typefaces, idiosyncratic handwriting and 
imperfect image acquisition. Adaptive and style-constrained 
classification methods can overcome some expected 
variability, but human intervention will remain necessary in 
many tasks. Interactive pattern recognition includes data 
exploration and active learning as well as access to stored 
documents. The principle of “green interaction” is to make 
use of every intervention to reduce the likelihood that the 
automated system will make the same mistake again and 
again. Some of these techniques may pop up in forthcoming 
personal camera-based memex-like applications that will 
have a far broader range of input documents and scene text 
than the current, successful but highly specialized, systems 
for patents, postal addresses, bank checks and books.  
 
Keywords    interactive document analysis    adaptive 
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1. Introduction 
 
This is a review of a lifetime of industrial and academic 
research on character and document recognition. The quest 
is far from over. Perhaps some reflections on my own 
successes and failures can provide inspiration for research 
on approaches beyond those underlying the many successful 
applications where the potential for further improvement 
has already plateaued. For the next step, I propose a 
reincarnation of Vannevar Bush’s Memex [1], the Lifetime 
Reader (§5).  

Because I am reviewing over fifty years of work [2], I ask 
your indulgence for any sense of déjà vu. I also feel obliged 
to emphasize that this is not a balanced survey. I shall zig 
and zag shamelessly in the orthogonal directions of human-
machine interaction and autonomous adaptation. For a more 
aseptic review, please see [3].  
___________________________________________ 
G. Nagy  
Rensselaer Polytechnic Institute 
Troy, NY 12180, USA 
e-mail: nagy@ecse.rpi.edu 

The traditional problem of pattern recognition and 
machine learning is to classify a set of objects characterized 
by feature vectors (single pixels or combinations of pixels) 
into mutually exclusive classes. In our domain the objects 
are digitized artifacts created for symbolic and semiotic 
communications across time and space, i.e., documents and 
signs.  

In supervised classification, a subset of the objects—
ideally a representative random sample, but often only a 
convenience sample—is manually labeled for use as a 
training set of for estimating the parameters required for 
automatic assignment of labels to the remaining samples. 
The labels may be symbols of some alphabet, logographs, 
words or phrases, font or writer identities, document 
components (e.g., title, author, figure caption, citation, 
table), or document categories (letter, invoice, 
advertisement, duplicate, forgery). Fig. 1 is a 1960’s style 
illustration of this paradigm applied to character recognition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The classifier is trained on labeled patterns. After 
classifying the unlabeled test set (operational data), an 
operator corrects errors and labels rejects to produce a 
usable transcript. 

Data processed operationally is always much larger and 
necessarily more representative of itself than the training sets 
used for design. We should therefore draw on the operational 
data stream for improving the classifier by interactive 
labeling and training or by autonomous adaptation. Less 
direct feedback could also be provided by error-sensitive 
downstream client-systems when they try to make sense of 
the processed documents. 
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Regardless of whether human-labeled or machine-labeled 
samples (or both) are used to refine the classifier parameter 
estimates, the underlying assumption is the consistency of 
each batch. Manual or automated demarcation of batches of 
similar samples was unnecessary in conventional OCR post-
processing where errors were merely corrected but operator 
intervention was not used to improve the essentially static 
(in earlier times, hard-wired) OCR engines. It is only 
recently that large-capacity classifiers like Deep Neural 
Networks obviated the need to readjust the classifier 
parameters for any change of document font, layout, or 
language even if it has already been seen in the past. Their 
output on many documents is still far from perfect. 

Instead of starting out by labeling some samples for 
initializing the classifier, the samples can be clustered into 
groups such that the within-group distances between the 
feature vectors are smaller than the between-group 
distances. This is called unsupervised classification or 
learning without a teacher, but still requires specifying some 
cluster size, shape, distribution, cardinality constraint or 
other optimization criterion (hyper-parameters). Grouping 
similar samples minimizes human effort because only one or 
a few representative members of each cluster need to be 
manually labeled [4].  

Clustering the feature vectors of character images also 
opens the way for labeling by a computer agent, for instance 
by assigning an alphabetic label to each cluster according to 
symbol co-occurrence frequencies, or a dictionary, or some 
higher-level language model [5,6,7 8]. This works 
admirably regardless of typeface, as long as the entire text is 
in the same font and language. It is like solving a substitution 
cypher. Crypt-OCR is appealing and could be more fully 
exploited in combination with other methods. 

These topics are all interdependent and jumbled in my 
mind, yet I must try to present them sequentially. In Section 
2, I discuss several kinds of interaction that are relevant to 
DIA, but omit others where I have little or no personal 
experience, like CAPTCHAs, word-completion, line-
following for vectorization, interactive mathematical proofs, 
and social networks. In Section 3, I offer my two-penny’s 
worth on adaptation, which has a huge literature, and on style 
constraints, which so far has been of interest mainly to 
myself, my students, and a few gullible researchers. 
Illustrations of concrete examples from our experiments are 
reproduced in Section 4. Section 5 sketches the Lifetime 
Reader, a prospective application that could make use of 
some notions discussed in the preceding sections. Perhaps 
some of you can help the Lifetime Reader reach operational 
status before my memory leaks get much worse. I have not 
yet reached any immutable Conclusions, so I will stop there. 

 
2. Interactive Pattern Recognition 
 
Survival of the species demands expertise in pattern 
recognition. So we can take it for granted that we are all 

experts who can help machines to recognize or classify 
objects. We readily acknowledge that computers have better 
memory and are faster than we are. We therefore accept 
examining only small subsets of data displayed by the 
computer and will gladly let the computer do the dog work 
according to our insightful instructions. Dorothea Blostein 
and I reported some figures on the cost of operator time 
relative to overall document processing cost [9]. 

There are many ways of improving automated data 
analysis based on selective displays of relevant aspects of the 
data or of the results of the automated process on previous 
data. J. Zou and I reviewed some of the motivation and 
benefits of human-computer interaction (HCI) for pattern 
recognition in [10]. Here I attempt to cluster my remarks into 
four categories: Exploratory Data Analysis, Performance 
Evaluation, Active Sampling, and Green Interaction.  

 
2.1 Exploratory Data Analysis 
 

The toolkits of Exploratory Data Analysis (EDA) help to 
inspect datasets characterized by multi-dimensional 
descriptors (features) in order to determine what type of 
automated processing (dimensionality reduction, feature 
selection, classification, identity confirmation …) would 
yield the best results. Typical tools are sample selection, 
projections into low-dimensional spaces with additional 
dimensions represented by color or distinctive glyphs, plots 
of marginal or low-dimensional joint probability 
distributions, and descriptive statistics like minima, maxima, 
averages, correlation coefficients, and higher-order 
expectations of selected samples.  

Early work in EDA was reviewed in a book by Y.T. Chien 
[11]. Influential proposals were set forth in 1970 by Ball and 
Hall [12] and Sammon [13], followed a few years later by 
Tukey’s still useful book on data analysis [14]. Parts of 
Gelsema’s ISPAHAN were commercialized for interactive 
blood cell analysis [15,16]. A thoughtful examination of the 
various steps in EDA (perhaps slightly biased towards a 
central role for clustering) appeared in Jain’s and Dubes’ 
1988 Algorithms for Clustering Data [17], and in the same 
year Siedlecki, Siedlecka and Sklansky published their 
survey [18]. By the end of the century, EDA was morphing 
into Data Visualization (DV) [19]. A set of modern and 
powerful java-based EDA tools (Mirage) were crafted by 
T.K. Ho and her colleagues at Bell Labs [20].  

Although technological advances in computer graphics 
(frame-rate, resolution, color-depth, stereo, holograms, and 
virtual reality) promote further progress in exploratory data 
analysis and data visualization, insight into the 
configurations of samples of several classes and subclasses 
in feature spaces of several dozen or several hundred 
dimensions remains elusive. Many of our insights from two 
and three dimensions are misleading [21]. This could be 
expected from extrapolating Flatland [22]. 
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2.2 Performance Evaluation 
 

How can we evaluate conventional, interactive and 
adaptive pattern recognition systems? We are often biased in 
assessing the recognition results of systems that we have 
designed, redesigned and tested and re-tested over a period 
of years—usually with the same data. In 1983 I collected 
some common instances of statistical malfeasance in a two-
page PAMI article (my favorite), with references omitted to 
protect the guilty [23]. Some of my harangues against subtle 
ways of training on the test set or optimistic assumptions of 
independence were recently reprised by others [24]. 

Later on, during three stints at ISRI-UNLV, I learned a 
great deal about OCR benchmarking from Tom Nartker and 
Steve Rice. I summarized what I knew about performance 
evaluation in [25], and the three of us compiled and 
annotated OCR errors in a coffee-table book that never made 
the NYT best-sellers list [26]. To my regret, I did not 
mention the useful McNemar’s hypothesis test for 
comparing classifiers when the identity of the misrecognized 
objects is known [27].  

What is the role of Henry Baird’s document defect 
models [28] in training and testing OCR systems? Dan 
Lopresti and I serendipitously gave complementary, back-
to-back papers on the subject at an ISRI conference. We 
recruited some younger and brighter helpers and combined 
our ideas in a PAMI article [29]. We later contributed to 
defect models the single entirely unavoidable source of noise 
in scanning, random-phase spatial sampling, that had 
previously been of interest only in satellite remote sensing 
[30]. A current alternative for augmenting training sets are 
Generative Adversarial Neural Networks (GANNs)[ 31] 

In the absence of useful feedback from downstream 
programs, human correction time (using an appropriate 
GUI) is a good measure of classifier performance. 
Unfortunately it turns out that humans are far from infallible 
or even consensual in labeling document artifacts [32,33]. 
Lamiroy and Lopresti propose a comprehensive 
benchmarking system that accommodates multiple ground 
truths and offers a fresh selection of samples for each 
experiment for credible performance comparisons [34]. My 
mind reels at the intricacy of interaction, adaptation, and 
evaluation of distributed DIA applications, each processing 
different streams of data for different clients. 
 
2.3 Active Sampling 

 
The key idea of active sampling/learning is to label only 

samples too close to the current classification boundary for 
a reliable decision [35,36]. Reducing the size of the training 
set offers two advantages: less operator time for labeling, 
and less machine time for training the classifier. However, 
we may be picketing irrelevant part of the sample space 
because the exact location of the boundary is unknown until 
the classifier is fully trained. Proposed information-theoretic 

selection criteria are subject to the same caveat [37].  
Active sampling has also been applied to selecting 

features, based on their predictive capability, with minimum 
acquisition costs. The candidate features are extracted from 
a region of the sampling space where the choice of features 
is likely to have the greatest impact [38,39]. 

 
2.4 Green Interaction  
 
Green interaction in OCR consists either of proofreading the 
entire output of the classifier, or correcting only rejected 
(unlabeled) character samples, and then retraining the 
classifier with the re-labeled data. The classify-label cycle is 
then iterated on new data. I dubbed this “green interaction” 
in 2011 [40]. This notion is illustrated in Fig. 2. Green 
interaction in an industrial OCR engine is described in [59]. 
Examples from our own work appear in Section 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Green interaction recycles rather than using 
human corrections only to correct the current output  
(figures in color on line) 

Parsimonious human interaction throughout the 
transcription process is better than intervention only at the 
start and end. The question that arises naturally is: After how 
many samples should one switch from automated 
classification to manual labeling and vice-versa? We 
proposed a solution for optimal splits of the data into training 
and test sets in [41]. Although we provided some supportive 
experimental evidence, our theory is based on earlier results 
on learning rates and some questionable assumptions. The 
efficient use of human labor in operational settings requires 
more substantial research. 

 
3. Adaptation and Style Constrained Classification  
 
Adaptation means different things to different people. By 
adaptive classification I mean improved classification of a 
set of unlabeled patterns by taking advantage of other 
unlabeled patterns. Adaptive and style-constrained 
classification work best when the entire set of patterns – 
from the same page, book, or same-source letters - exhibits 
font, printer, scanner, or vocabulary consistency.   
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Glen Shelton’s and my 1965 experiments on adaptive 
recognition of typewritten characters followed the footsteps 
of Gold (MAUDE adapted to the lengths of Morse code 
spaces, dots and dashes [42]), Cooper and Cooper (adaptive 
signal detection [43]), Fralick [44], Braverman [45], 
Dorofeyuk [46], Scudder [47], Lucky (adaptive equalization 
[48,49]) and many others. The difficulties inherent in the 
various approaches were analyzed by Spragins in his 1966 
survey [501 and in a 1971 volume edited by Ya. Z. Tsypkin  
[51], who was a notable early contributor [52]. These 
notions were the forerunners of mixture identification 
models based on Expectation Maximization. Some of the 
terminology has changed, but stochastic approximation 
(Robbins-Munro algorithm), self-training / -adaptation / -
organization, learning without a teacher / trainer, inductive 
transfer, co-training, semi-supervised / unsupervised / 
transfer / surrogate and decision-directed learning remain 
hot topics. 

 
3.1  An Adaptive Classifier 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 

Fig. 3. Adaptive character recognition (a) As 
implemented at IBM (results in Fig. 7), and (b) as an 
example of a more general adaptive paradigm.  

Our 1966 character recognition system extracted n-tuple 
features by specialized hardware [53]. The 7-9 pixel n-tuples 
were specified by plug-boards designed for chain printers. 
Fig 3a shows the original scheme. It is redrawn in Fig. 3b as 
a more general adaptive paradigm.  

Self-correction significantly decreased the error rate on 
the first iteration, and slightly on the next few, as shown in 
Section 4. The success of this bootstrapping scheme 
prompted Henry Baird to try to replicate it on his celebrated 

100-font dataset (by far the largest at the time). [54]. “Self-
corrective” was recently revived for camera-based scene-
text labeling [55,56].  

Fig. 4 is a graphic illustration of why the multi-font class 
centroids tend to move towards the single-font centroids in 
spite of misclassified samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. A two-class (“1” vs. “7”) classifier where the classification 
boundary is the hyperplane that bisects the line segment that 
connects the class centroids. There are three fonts: Calibri, 
Bookman, and Lucida, with the samples of each shown in 
different colors. The red solid line is on the right is the 
hyperplane r defined by the centroids (shown as diamonds) of 
the Lucida samples classified as “1” or “7” by the omnifont 
classifier. The omnifont classifier makes 3 errors, but the 
retrained final classifier is 100% correct. 

Oddly enough, recycling only samples classified with 
high confidence, which occurs as a possible improvement to 
everyone who considers this scheme, usually yields worse 
results. My conjecture is that it is precisely the patterns 
nearest the classification boundaries that do most of the work 
(as suggested by the active learning paradigms of § 2.3).  

Ho and Agrawala offered a theoretical perspective on 
self-correction soon after we published our first results 
[57,58]. We still do not know, however, why simple mean 
adaptation works as well as it does, and when it is likely to 
fail. While developing sufficient (albeit unrealistic) 
conditions for successful adaptation is easy, after fifty years 
we still cannot formulate necessary conditions. Finding 
necessary conditions for the more complex self-learning 
methods will be even more difficult. The empirically 
observed magic of adaptive retraining of a simple classifier 
by an error-prone omnifont OCR engine is cogently 
discussed by industrial experts Ray Smith in [59] and István 
Marosi in [60] (both also emphasize the crucial importance 
of meticulous layout analysis).  

Eventually Harsha Veeramachaneni improved on self-
correction by regularizing the covariance matrices of the 
training set and by adapting the covariance matrices as well 
as the mean vectors via Expectation Maximization [61]. The 
largest improvements over the static Bayesian classifier 
were due to regularization (necessitated by too few samples) 
and mean adaptation, but re-estimating the covariance 
matrices also contributed.  
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3.2  Style constraints 
 
Style consistency is what Prateek Sarkar called the statistical 
dependence between the feature vectors of same-source 
(isogenous) samples. He defined discrete and continuous 
styles and weak (intra-class) and strong (inter-class) style 
consistency, and devised and tested optimal and fast 
suboptimal (style-consistent / -conscious / -constrained) 
classifiers [62]. Sarkar also developed the diagrams of Fig 5 
that we later used to illustrate other style-conscious 
classification algorithms. 
 
 
 

Both adaptive and style-constrained classifiers are field 
classifiers as opposed to singlet classifiers. That means that 
the classification of every pattern in the field benefits from 
information from every other pattern. In our terminology, 
the field of an adaptive classifier encompasses the entire test 
set, while style-constrained fields are of fixed length. The 
effects of this distinction on interaction between training and 
testing, approximate vs. optimal algorithms, classifier 
design, and the contrasting aspects of language-context 
based classification [63,64] and of font recognition 
[65,66,67], are elaborated with a highlight on context in [68] 
and on interaction in [69]. Now that is a non-explanation 
with abundant references!

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (b)       (c) 

Fig. 5. Pairs from two classes A and B, and two styles 1, and 2. (a) Individual Gaussian class-conditional probabilities  
(b) Joint probability contours (the samples of each pair have the same style) (c) Classification boundaries without and with style 
constraints. 
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Harsha Veeramachaneni liked to say that “the way Ann 
writes a 1 suggests how she would write a 7”. The key is the 
consistent inter-pattern f eature dependence that is neglected 
by conventional classifiers (Fig. 6). Style-consistency differs 
from language context that is usually defined in the OCR 
literature as statistical dependence between labels of the 
samples. 
 
 
 
 
 
 
 

Fig. 6. Style. The 7 on the left is identical to the 1 on the 
right, but we can recognize them because the left 1 is 
different from the right 7.  

Harsha formulated adaptive quadratic discriminants for 
continuous Gaussian styles. He proved that under realistic 
assumptions, the covariance matrix of a same-source 
sequence of any length can be derived from the class-pair 
covariance matrices (though even for only ten classes and 
100 features, 55 100x100 matrices must be estimated for 
each style!).  He showed that as the same-source test fields 
get longer, the error rate converges to that of the intra-style  
(single-source) classifier [70] and derived sensible bounds 
on the reduction of the error rate with field length.  He 
pointed out that field classifiers can be optimized either for 
minimum field error rate (as would seem desirable for short 
fields like zip codes), or for singlet error rate (for longer 
fields like business letters).  

In a more abstract vein, Harsha proved that, style context, 
unlike language context, must be order-independent, e.g., in 
Duda&Hart notation: 

 
P(5 7 9  | [ x1 x2 x3]) = P( 7  5  9 | [ x2  x1  x3],  
 

which is the exchangeability property that underlies several 
useful results of probability theory [71]. This property 
implies that style and language context require different 
methods, although, they can be combined for mutual benefit. 

Style context is by no means a rare or an esoteric 
phenomenon in digitized documents (or in other 
classification tasks like faces or works of art). Aside from 
the obvious consistency of typeface in printed passages and 
the individuality of handwriting, more subtle effects arise 
from commonality of printer, pen and paper, and in-house 
standards of form and table layout. Indeed, one has to work 
hard to remove all style context (as perhaps desirable only in 
a ransom note). It has been clear for some time that further 
improvement in the accuracy of commercial OCR and off-
line hand-writing recognition is unlikely without 
incorporating more context of every kind [72]. Research 
continues apace: a recent successful idea is Zhang’s and 
Liu’s style transfer mapping [73].  

As indicated in§5.1.1.2.1 Human-Machine Interaction 
Testbeds and in §5.1.1.2.2 Life-Long and Life-Wide 
Personal Assistant Platforms of the influential A 20-Year 
Community Roadmap for Artificial Intelligence Research in 
the US [ 74], trends are in AI research are veering from 
transcription and labeling to content understanding, high-
level human-computer interaction, and natural language 
translation. 
 
4. Illustrations from our Experiments 
 
This section illustrates, in approximate chronological order, 
some of our experimentation with interaction and adaptation 
over the last half century. Light reading, I promise! 
 
Typewritten characters. Fig. 7 reproduces the twelve 
impact-printer fonts and the corresponding error rate vs. 
iteration plots of the 1966 self-corrective classifier study 
described in Section 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Self-corrective character recognition. Fonts on 
the left, error rates vs. iteration on the right. The top of the 
y-axis is 20% [53]. 

Although OCR systems no longer attempt to recognize 
characters one at a time,  adaptation to imperfectly machine-
labeled text may reduce the voracious appetite for training 
samples of window-based systems like Hidden Markov 
Models and Convolutional Networks [75].   

 
Printed pages. My first interaction with a scanned typeset 
(rather than typewritten) document was circa 1969. Fig. 8 
shows field definition for line finding and character 
acquisition on a cathode ray tube attached to the scanner 
and to a graphics tablet, and labeling on the IBM 2250. I 
retrieved and retained the original figure captions from [4] 
and apologize for the quality of these fifty-year old 
Polaroid photos of an asynchronous CRT vector monitor. 
They illustrate tools for human-computer interaction before 
the advent of raster graphics and touch screens.   
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Fig. 8. (a) Field definition. The trace of the stylus on the 
display. In this time exposure one may also see the 
rectangular overlay which helps the operator to confirm that 
the boundaries have been correctly demarcated. In this 
example, two text fields have been selected. 

 
 
 
 
 
 
 
 
 
 
 
 
(b) Character acquisition. The brighter region on the left is created by 
a time exposure of the horizontal line-finding scan. The character 
acquisition scan, consisting of short vertical strokes, is initiated as 
soon as a line is found. The shutter was closed just before the process 
reached the end of the upper text field shown in Fig. 8a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) Display station for character labeling and identification. The 2250 
display in the course of identification of video from legal text. The 
characters on the bottom line have already been typed in by the 
operator. Part of the line is brighter because the shutter was not 
synchronized with the CRT sweep. 

Soil maps and text editors. In Nebraska at the end of the 
seventies, we digitized soil maps [76]. It was interactive in 
the sense that the computer warned the operator about 
anomalies like leaking region boundaries or offsets at the 
edges of the sheet (Fig. 9). The reading required to 
familiarize ourselves with the many national projects aiming 
to computerize maps and other sources of geographic data 
led to our review of GIS (then called Geographic Data 
Processing or GDP), in Computing Surveys [77]. A year 
later we reviewed –also in Computing Surveys –interactions 
with text [78]. Your word-processor may be dumb, but it is 
much smarter than it used to be! 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Soil map digitization. Left: equipment. Right: a 
soil map. 

Topographic maps. We next digitized street lines and 
recognized street names on a 1:24,000 USGS 7 ½ minute 
quad of Washington (D.C.) East (Fig. 10). After deleting 
contour lines and other map symbols via color and connected 
component analysis, the program reconnected broken street 
names, rotated them to horizontal, and extracted character 
prototypes to be used for classification prior to interactive 
correction of rejects [79,80]. Since all new maps are 
generated by computer, map conversion has become part of 
historical document processing. Nevertheless the extraction 
of map text that overlaps other symbology is still a topic of 
current research [81]. If others had not improved on our 
methods, mainly via more efficient interactive image 
processing, we would still drive around folding and 
unfolding road maps. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Small part of a city map. Extracted street layer, 
character templates, and segmented street names grouped 
and rotated to horizontal for ease of automatic or manual 
transcription.  
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     (b) 
 
 
 
 
 
 
 
          (a) 
 
 
 
     (c)  

Fig. 11. Layout analysis. (a) X-Y tree for a title page 
from the IBM Journal; (b)  text blocks from a PAMI page 
processed by a commercial OCR system; (c) Naïve, pre-
web idea of a browser. 

Page layout segmentation. Maps and computational 
geometry were great fun, but RPI did not have a geography 
department, so at the end of the eighties I returned to printed 
documents. We segmented scanned technical articles using 
X-Y trees [82] and page grammars into a dozen components 
like title, author, footnote, reference, and photo [83,84]. We 
proposed but never completed a browser for image and text 
segments (Fig. 11) that in any case would soon have been 
rendered obsolete by the advent of Netscape Mosaic. 
 
Reprise: Self-corrective. Fig.12 shows Henry Baird’s results 
on 6,400,000 characters (100-fonts with 80 symbols from 
each, constructed with his defect model). His conclusion: 
good investment: large potential for gain, low downside risk. 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Results of self-corrective recognition on Baird’s 
database. 

 
 

Style constraints. Weak style means that each class within a 
field, appears in a single style. Strong style implies that every 
sample within a field has the same style (Fig.13). Both occur 
in the wild. 
 
 
 
 
 
 
 
 

Fig. 13. Two font variants in different configurations. 

Adaptation. Fig. 14 shows results on an NIST dataset [61]. 
 
 
 
 
 
 
 

Fig. 14. Adaptive classification. Left: writers with increased errors 
(≥2 errors); Right: writers with fewer errors (≤26 errors).  

Style-constrained classification. The benefit of style-
constrained classification over singlet classification grows 
(slowly) with field length, as shown in Fig. 15 [70].  
 
 
 
 
 
 
 

Fig. 15. Field error rates on two NIST datasets, trained on ~ 17,000 
characters and tested on ~17,000 characters with 5 top 
principal component “Hitachi” blurred directional features.  

Tight print. Yihong Xu extracted character prototypes from 
homogenous page segments and devised a level-building 
algorithm to match them in various sequences to touching 
printed characters (Fig. 16) [85]. Crowded print is common 
in historical documents and in analog photocopies.  
 
Tables. VeriClick is an interactive point-and-click tool for 
entering the four critical cells that suffice to segment the stub 
header, column header, row header and data regions of a 
table (Fig. 17). The tool may be primed with a file of critical 
cells generated by an imperfect segmentation program [86]. 
 
Computer Assisted Visual Interactive Recognition. 
CAVIAR is perhaps our best example of green interaction 
because it allow operator intervention to improve both 
feature extraction (the visual flower model) and top-ranked 
class assignments (into species) [87]. Fig. 18a shows the  
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GUI and Fig. 18b is a simplified diagram of the dataflow. 
We experimented with 1200 wildflower photographs of 
about 100 species that we collected ourselves (most 
enjoyable!), and with 400 NIST face images. We ported 
CAVIAR to two hand-held microprocessors with a camera 
[88]. We are often asked if CAVIAR could recognize birds, 
but that is a stretch. For actual use, any flower recognition 
system should incorporate the approximate dates 
 
 
 
 
 
 
 
 
 
 
 
      (a) 
 
 
 
 
     (b) 
 
 
 
 
 
 
 
 
    (c) 
 

Fig. 16. Adaptive prototype extraction. (a) Ugly scanned 
text; (b) Extracted prototypes; (c) Level building: the 
correct solution, which best fits the input, emerges in the 
third row from the bottom. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 17. VeriClick. If the computer-generated 
segmentation is incorrect, the operator clicks on the corners 
of the stub head or the data region (both yellow) to correct it 

when species bloom in various regions, and a GIS to provide 
latitude, elevation, and exposure (Easterly, Southerly). 
Several thousand species of wildflowers have been 
catalogued. CAVIAR needs at least one photo in situ (rather 
than a drawing from a flower guide) of each species. Perhaps 
they can be collected by bee-drones.  
 
Manuscripts. Dan Lopresti developed an interface for 
entering metadata for historical documents (Fig. 19). We 
explored possible paths from interaction to automation [89].  
 
Survey forms and election ballots.  Lopresti’s GUI was 
designed for flexibility. He eventually modified it for several 
other applications, including the survey- and ballot- 
definition interface of Fig. 20 [90]. Endowing such tools- 
with green interaction requires combining them with 
automated processing to fill out the forms for operator 
correction of incorrect entries. We eventually programmed 
automated ballot tallies [91], but never got around to 
combining them with the GUI. 

 
Calligraphy. Xiafen Zhang’s Web interface (Fig.21) speeds 
up labeling databases of ancient calligraphy [92]. The pages 
are segmented semi-automatically, with interactive 
correction where necessary. Displaying each unknown 
sample with its neighbors helps to identify rare and ancient 
characters. As in CAVIAR, a classifier provides top 
candidates. Clicking on one of the candidates is faster than 
the default entry method via Pinyin. Operator actions are 
timed and logged for related human factors research.  

All the interfaces of Figures 17 – 21, are designed to 
display computer-generated labels and images that can be 
confirmed or corrected with a few clicks. Such classifier-
assisted interactions are likely candidates for crowd-sourced 
labeling that requires minimal key entry. 

 
Green information extraction from semi-structured books. 
At the suggestion of my decades-long collaborator David 
Embley, in 2016 I began development of multi-resolution 
template matching for extracting factoids (names, places and 
dates) from family books. These fragments of information 
are usually harvested from printed sources by volunteers. 
They are eventually integrated by FamilySearch, Ancestry 
and others into genealogical data bases.  

Searching family trees became a growth industry after 
their migration from microfilm to the web. A FamilySearch 
website mentions 300,000 scanned and OCR’d family books 
awaiting further processing.  

It is easy enough to construct a dozen or so templates that 
will extract 90% or even 95% of the factoids from a book. 
This is, however, a long-tailed process: 98% may need ten 
times more user interaction, and 99% another factor of ten. 
It is increasingly hard for a volunteer to spot unusual text 
configurations (e.g. natural instead of born) in hundreds of 
very dry pages   
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(a) 
 
 
 
 
 
 
\ 
 
 
 
 
 
 

(b) 
Fig. 18. CAVIAR (a) The GUI allows one to drag control points on 

the flower outline, to select one of the candidates as representing 
the species of the unknown, or to scroll through additional 
candidates. (b) When the visual model is changed, the ranking is 
recomputed. The classifier improves as new samples are 
identified and added. 

The green aspect of our procedure is that after a first pass, 
with 90-95 of the factoids already labeled (mostly correctly), 
the program suggests locations in the text that are likely to 
yield good query phrases for new templates.  The first 
results, based on a Scottish parish registry, Ohio funeral 
parlor records, and the Ely Family history (in toto ~250,000 
factoids), were presented at a workshop last year [93]. I am 
almost ready to report further progress. I also eager to 
explain why, in spite of the spectacular results of deep 
learning on document and speech recognition, we chose a 
configuration of conventional NLP tools that allows fast and 
effective user interaction. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Clicker, a prototype for collecting metadata. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20. Ballot Tool for priming automated processing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 21. Web interface for computer-assisted labeling.  
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This was more than enough reminiscing! I enjoyed research 
on these topics (and on a few others), so much that I could 
not stop when I retired in 2011. It is now past time to assume 
a spectator’s role, but first let me peculate a little about a 
recurring fantasy of mine, the Lifetime Reader [94]. 
 
5. The Lifetime Reader 
 
The Lifetime Reader that I covet (LiRe for short, rhyming 
with eyrie) reads everything that I do, as well as most of what 
I see but skip. Unlike me, it remembers everything. It has no 
output other than a USB port or wireless, so I need a 
smartphone to retrieve anything. It is my personal web that 
differs from the worldwide web much as my backyard 
differs from a national forest. As the culmination of the 
efforts discussed in previous sections at constructing a 
universal reading machine, it offers exciting research 
opportunities on combining camera-based OCR with 
personal information retrieval. Version 1, the memex, was 
proposed by Vannevar Bush:in 1945: As the scientist of the 
future moves about the laboratory or the field, every time he 
looks at something worthy of the record, he trips the shutter 
and in it goes, without even an audible click. Is this all 
fantastic? [1]. 
 
5.1 Camera-based OCR 
 
We have come a long way since my first exposure to camera-
based OCR in September 1960 [95]. Fig.22 shows Mark 1 
(now in the Smithsonian Museum) learning its letters. 

During the Cold War, subminiature spy cameras captured 
readable document images. Millions of genealogical 
microfilm records are still being digitized inside Granite 
Mountain [96]. Research on camera-based OCR began long 
before the first workshop on Camera Based Document 
Analysis and Recognition (CBDAR) was held in 
conjunction with ICDAR 2005. At that ICDAR, Masashi 
Koga demonstrated mobile-phone Kanji OCR on snippets of 
printed pages [97]. Many of you will remember Liang’s, 
Doermann’s and Li’s thoughtful survey in the same year 
[98]. Dave Doermann and his colleagues went on to rectify 
and mosaic camera-captured document images [99,100], 
paving the way for information extraction from full pages of 
text. Another approach is matching fragments of documents 
at the image level [101]. Instead of OCR-ing the page, it can 
be recognized and retrieved from a digital library [102,103]. 

The technology needed for LiRe is almost available and 
almost affordable. The wearable camera and, micro-
processor can be far simpler than virtual reality headsets like 
Google Glass[104] or HoloLens[105] because all the 
downstream document processing, including rectification, 
layout analysis, OCR, perhaps translation, encryption, 
information retrieval, and display, will take place on another 
platform.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23. Camera-based OCR in 1960 with a 20 x 20 pixel 
camera. 

As expected with an idea whose time has come, other 
researchers have also proposed keeping track of what we 
read [106,107,108] or, as suggested much earlier, 
translating it into our own language [109].  

 
5.2 Reading for Fun and Profit 

 
What have I read or seen but remember only dimly if at 

all? I struggled through much of Kramèr’s Mathematical 
Methods of Statistics, where some paragraphs took me an 
hour. I read War and Peace when it was obligatory, and a 
good deal of light fiction (some as e-books) that was not. I 
leafed through many pages but read only a few stories in 
thousands of issues of the New York Times and the Albany 
Times Union. I try to keep up with the IAPR and the TC-11 
Newsletters, and occasionally revisit your conference papers 
and articles (in print from my file cabinets or on the web) 
when I forget crucial details or, less often, your major point. 

I skim advertising pamphlets for hearing aids (all the 
manufacturers must know that I am nearly deaf), colorful 
political flyers requesting my vote, notices from my credit 
card issuer either initiating or canceling rental car insurance, 
and Privacy Policies. I dig out old email and saved directions 
to an obscure trailhead. Every year I re-read the instructions 
to relight our furnace pilot and program the thermostat. 

I do remember parts of our interesting conversation on the 
way to the ICPR banquet in The Hague, but your name 
escapes me. I would like to glance at the business card you 
gave me then or the conference badge you wore. (Apparently 
others need help too [110].) We talked about scanner 
calibration. Now where did I see that advertisement for 
universal calibration charts for wide-angle cameras?  

LiRe will save me hours of search for that play where the 
old curmudgeon insists on noodles without salt. Try finding 
it on-line! It will keep me from misquoting Shakespeare or 
Knuth. Is the warrantee on my watch still valid? My personal 
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Wikipedia will let me pose as an authority on the history of 
skeletonizing and stroke thinning. Wholly new forms of 
encyclopedias will appear, ready made with a mesh of 
associative trails running through them, ready to be dropped 
into the memex and there amplified [1]. 

Other LiRe users may want to retrieve elusive blogs, 
newsfeeds, webinars, wikis, genealogical resources, 
historical accounts that they had enjoyed, letters they wish 
they had kept, and PDF or DOC files that they never 
transferred from a broken laptop.  

So what do we need to construct a LiRe?  
 
5.3 LiRe Parts List 
 
We need only a tiny high-resolution camera, a fast on-board 
processor with plenty of primary and secondary storage, and 
a garden-variety smartphone or laptop to which we can 
upload images of what we have recently read. The host 
computer will cull useless or repetitive images that were not 
filtered out by the camera computer, and OCR and index the 
rest for eventual regurgitation.  
 
Camera. The camera hound of the future wears on his 
forehead a lump a little larger than a walnut. It takes 
pictures 3 millimeters square, later to be projected or 
enlarged, which after all involves only a factor of 10 beyond 
present practice. [1] A 60° field of view, with autofocus 
from 25 cm to infinity, could capture newspaper pages. Text 
that I merely glance at rather than read can be mosaicked 
with methods developed for copying for a large document 
on a small copier [111]. I envision a frame rate of 1/s, or 
perhaps slightly higher to provide redundant images.  

A CCD or CMOS sensor array of 5K by 4K pixels (20 
MB per frame) should be adequate for letter-sized text 
images that occupy only less than one quarter of the field of 
view. Borescope and endoscope cameras are small enough 
but they are limited to about 2 Megapixels. The camera 
should be worn as close as possible to the eye (mounted on 
spectacles, on the ear like LifeLogger [112]), or a collar or a 
lapel). Several patents have already been filed for cameras 
in smart contact lenses.  

 
On-board Memory. The entire material of the Britannica in 
reduced microfilm form would go on a sheet eight and one-
half by eleven inches [1]. A full-text page of IJDAR has 
about 1400 words. Perhaps some pages can be skimmed in a 
second or two, but at an average reading speed of 300 
words/minute many pages will take 5 minutes. So for 
attentive reading retaining one frame per minute, rather than 
one per second, would suffice. We dwell on street signs, 
invoices, and most ads only briefly, but they have less text. 
We can count on a lossless compression ratio of at least 40:1 
on clean text images scanned at 300 dpi [113]. So 17GB will 
suffice for the compressed images corresponding to turning 
a page every second for eight hours.  

Speech and image recognition. A mic could add 
considerable functionality. Hearing aids already attempt to 
differentiate and filter intelligible speech from noise. Some 
of the processing software could be combined: OCR with a 
speech recognition toolkit was presented at a recent 
conference [114]. On the retrieval end, most of my friends 
prefer listening to reading while driving or exercising. This 
does not require additional provisions because audio replay 
and text-to-speech are already part of mobile platforms.  

In principle, video can also be continuously collected, as 
famously suggested by Gordon Bell.. However, the plethora 
of tools for organizing personal photos suggests that finding 
desired pictures in even relatively small and purposive 
collections is far from easy. LiRe is only for text. 

 
On-board microprocessor. The main task of the camera-
integrated computer is to detect text and to compress and 
temporarily store the text images. Fast image and video 
compression algorithms are already available. Furthermore, 
not all the compression must be done in real time. Stored 
images could be filtered and compressed when the camera 
has no readable text in view. An alternative is to maintain 
the camera in a low-resolution “surveillance mode” except 
when it sees readable text. 

Rapid but only partial processing of the data stream 
requires some research because most current camera-based 
OCR systems are designed for near-real-time output [115], 
as required, for example, for translating posted signs [116]. 
 
Off-board processing. The off-board computer has several 
tasks. It must combine some frames and discard others, 
perform layout analysis on a variety of input (text 
documents, forms, computer displays, scene text), carry-out 
OCR, perhaps translate and encrypt the transcript, update the 
index, accept user directions, and provide a query interface.  

Often-noted differences between scanned and camera 
captured text are the possibility of severe geometric – affine 
and perspective – distortion, and contrast variations due to 
uncontrolled illumination. Although dozens of binarization 
and skew detection/removal methods are available, the 
extent of distortion in camera captured text, especially scene 
text, requires methods similar to those used in computer 
vision [117]. We expect, however, that the bulk of the text 
acquired by LiRe will have been purposively read and 
subject only to modest distortion. Most of us prefer to read 
in good light, and tend to keep reading material horizontal 
and perpendicular to our (and the camera’s) line of sight A 
calculation in [94] shows that 20GB will suffice for a 
lifetime of encoded visible text and transcribed speech. 

 
Retrieval. How can we find what we want in all that stored 
text? Ay, there is the rub. Query formulation for a LiRe 
personal collection will require new thought. Useful notions 
for personal filing systems were proposed and demonstrated  
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by Fujisawa et al. thirty years ago [118]. Although data 
structures for concept relations have evolved, such a system 
would still require user annotation at the front end (for which 
voice input would often be convenient). This would seem 
appropriate only for selected “important” text images. LiRe 
must also be able to collect text without distracting the user 
while she is reading, surfing the web, watching a 
presentation, or window–shopping. Fortunately complete 
temporal (calendar and clock) and spatial (GPS) referencing 
requires only existing technology. 

For retrieval of non-annotated material, we could perhaps 
adopt and adapt browser technologies which are now well 
beyond simple keyword search. Initially there will not be 
any PageRank factor, but I do tend to look for the same thing 
more than once. Another set of query tools is available from 
the Library side, which started out with Author and Subject 
card catalogs but now incorporate all the tools of information 
retrieval like pattern matching on compressed text, inverted 
indices, perfect hashing, signature files, elaborate text 
tagging, fuzzy clustering, vector-space models, latent 
semantic indexing, graph algorithms, and relevance 
feedback. It is all turning into AI! 

Three factors work in our favor. The first advantage over 
web search is that we are not talking about that much data to 
be indexed. Even if you acquired a LiRe in grade school and 
live to be a hundred, the final volume of 20 GB to be 
searched is less than one fifth of one millionth of the 
estimated size of the pages indexed by Google Search 
(100,000 TB in 2019). The second advantage is that the list 
of top-ranking items displayed in response to a query will 
already seem familiar, so we can parse it quickly to find the 
page, passage or phrase that we sought. (This is why some 
of us hang on to our obsolete but well-thumbed textbooks.) 
Finally, we will not be too bothered by OCR errors because 
we are all used to fractured and misspelled prose and because 
we are likely to keep what LiRe tells us to ourselves 

While AI is heading towards content understanding and 
retrieval, we will looking only for what we might have read.  

 
5.4 A Bucket List 
 
In spite of the popularity of the biennial CBDAR and early 
successes on small-format input like business cards and on 
scene text, I have not yet seen any wearable-camera based 
system capable of reading magazine or book pages, let alone 
the New York Times. The LiRe is barely on the threshold of 
technological feasibility. Aside from configuring the 
required hardware, most of the research that remains to be 
done falls squarely in our community: 

 
Text detection in spatial context, at home, at work, in local 
venues, in transit, abroad;  
Mosaicking required by head and body motion;  
Reading-order (no gaze tracking here); 

Retention policy for unreadable and unindexable fragments 
of text, and near-duplicates;  
Duplicate detection from consecutive frames and after 
(possibly lengthy) interruptions; 
Lazy compression of sparse-text images;  
Perspective-invariant recognition instead of rectification; 
Adaptation to predictable reading material like the daily 
newspaper, magazines, the remaining volumes of the Jack 
Aubrey series, IJDAR, and Python v2.7.6 documentation;  
Front-end annotation, for instance by tracing a phrase on a 
page or display with a deliberately selected finger or saying 
“at RPI Libe for preparing IJDAR paper.”; 
Back-end annotation, selective, quick and simple; 
Retrieval strategies that mesh with our own mental recall;  
Personalization to scripts and languages; reading speed; 
computer display settings; paper and laptop reading 
postures; work, leisure, shopping and napping habits; 
Logging queries, responses, and user reactions for 
improving LiRe even as our own memory gets worse; 
Security and privacy: what do these mean over a lifetime? 
Lifetime text recording: What are the social, ethical,, legal 
and marketing implications?  

This is surely an incomplete list, but there is already 
enough here to keep some graduate students busy. Some 
additional issues are raised in [9494]. I look forward to your 
and your students’ (and perhaps to their students’) 
contributions to the LiRe. If you are an entrepreneur, please 
remember that I am an eager potential customer. 

 
5.5 End Note 

 
I have been fortunate in having so many opportunities to 

learn from my own family, friends, colleagues and students. 
Thank you for bearing with this long-winded, green-tinted 
doc-tech auto-bio that lists my attempts to find new twists 
for automating symbol interpretation in the small and in the 
large. Documents are surely among the best examples of 
human achievement.  That is why I continue to enjoy so 
much the quirky research problems, erratic progress, and 
excellent company of DA&R.   
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