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ABSTRACT 

Conventional template matching for named entity recognition on 

book-length text strings is generalized by allowing search phrases 

to capture distant tokens. Combined with word-type tagging and 

format variants (alternative name/date formats), a few initial 

templates (class—search-phrase—extract-phrase triples) can label 

most of the significant tokens. The program then uses its book-

length statistics of tag-label associations to suggest candidate text 

for further template construction.  The method serves as a 

preprocessor for error-free extraction of semantic relations from 

text obeying explicit semi-structure constraints. On three sample 

books of genealogical records, an F-measure of over 0.99 was 

achieved with less than 3 hours’ user time on each book. 
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1 Introduction 

We revisit generalized template matching for named entity 

recognition in family books. In contrast to machine learning and 

neural networks, this approach requires no training or validation 

data, explains every decision, and provides a natural path for 

incremental improvement without post-processing.  We present 

recent improvements, answer some queries prompted by our 

earlier communications, and lay the foundations for our 

forthcoming report at ICDAR’21 on named relation extraction.  

We were motivated to embark on this strand of research by a 

long-time colleague’s participation in a much larger project at 

FamilySearch. That project’s objective is the construction of a 

pipeline from existing sources – current databases, books, census, 

parish and military records, archival resources, even photographs 

of tombstones – to a “universal” genealogical ontology.  Yet 

unexploited sources include over 300,000 already digitized family 

books (published compendia compiled from the records of a 

family, parish or town). They are typically a list of assorted facts 

like names, dates and places presented as quasi-repetitive phrases 

of keywords and targets with simple \ grammars.  

The GreenEx method presented below aims at the rapid 

extraction of desired facts from entire semi-structured books. 

Tests on a test set of 18 random pages of 10,391 word tokens 

yield an average F-measure of 0.993 and Precision of 0.998. We 

are confident that these results are representative of the 819 pages 

(35,782 lines and 473,083 tokens) from the three books that were 

processed.  Logged user time was under three hours and computer 

run-time was under one minute for each book. The method is 

applicable only to semi-structured text subject to explicit 

constraints. 

2 Prior Work 

This presentation is intended to bridge generalized template 

matching [1] and our report at the main conference on named 

relation extraction [ 2 ]. These papers contain extensive (and 

heavily overlapping) literature reviews, so here we mention only 

the most relevant items.  

The Brigham Young University and FamilySearch team 

presented their research at the first HIP Workshop [3]. Their 

ontology-based system is more fully described in [4], which also 

proposes seven alternatives for fact and relation extraction from 

structured text:  (1) Extraction Rule Creation with Data Frames; 

(2) Template Matching with hand-crafted Regular Expressions; 

(3) Construction of Regular Expressions from Form Filling 

Example (the REGEX template matching scheme of [5 ]); (4) 

Extraction Rule Learning by Text Snippet Examples (based on an 

early version of GreenEx [6, 7]); (5) Extraction Rule Learning by 

Text Pattern Discovery; (6) Machine Learning of Extraction 

Rules; and (7) Extraction Rule Creation by Natural Language 

Processing and Cognitive Reasoning.  Perhaps because of 

FamilySearch’s far broader objectives, we have not yet seen any 

results directly commensurable with ours.    

Researchers from our community combined entity and relation 

extraction with handwriting recognition. In [8], a category-based 

language model is compared with a probabilistic finite-state 

machine model for labeling family roles in handwritten 17th 

https://doi.org/10.1145/1234567890 

HIP ’21, September 05, 06, 2021, Lausanne, Switzerland
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8690-6/21/09. . . $15.00
https://doi.org/10.1145/3476887.3476895      This is a pre-publication version



HP ’21, September 5, 2021 Lausanne, Helvetia G. Nagy 

Century Catalan marriage records. With a large fraction (6/7) of 

the 173-pages used for training, and seven-fold cross-validation, 

both methods yielded 70-80% Precision and Recall. Information 

extraction was also the topic of a 2017 ICDAR competition. 

Using neural networks and conditional random fields, the winning 

team from Harbin Institute of Technology achieved a  character 

error rate of ~8% on the same database, but 100 of 125 pages had 

to be manually labeled for training and validation [9].  

We reported the progress of GreenEx, on comparable test data, 

from F-measure = ~95% in [6] and [7] to 98% in [1]. The 

improvement was due mainly to the introduction of format 

variants. The major shortcoming in [1] was inflexible templates. 

The current communication shows that allowing extracts to 

“float” at arbitrary distance from their search phrase raises the 

average F-measure to 99.3%, using less than half as many 

templates. Although our focus is on user time, we also present an 

algorithmic twist that cuts runtime by 50%. 

3 Method 

GreenEx tokenizes the unicode OCR output and assigns a 

Sequence Number and a Tag to every token. Fifteen generic tags 

are based on the token’s characters: type case, letter/numeric, 

punctuation, and hyphen. They are augmented by book-specific, 

user-assigned literals like born and died that serve as their own 

tag, and by built-in or user-specified aliases like b.  born,  

month  {January, Jan., February …}, progeny 

 {child, children, son, daughter, dau.} or 

prep  {in, at, to, from…}.  

The user’s primary task is the specification of a set of initial 

templates via the ClickEx GUI [1]. Each Template consists of a 

Search Phrase and an Extract Phrase that appear in the text, and a 

Class chosen by the user. The operator clicks on the first and last 

tokens of a pair of suitable phrases, and on a pop-up list of Class 

Labels. An Extract Phrase may be located in the text several lines 

beyond its Search Phrase. The GUI validates the click sequence 

(or requests correction), assigns a Template ID, stores the 

template, and logs the user actions. An example of a template is: 

[T3; Parent1; son of; Elisha Mills Ely].  

GreenEx then tags the search and extract phrases of the 

templates. It also associates each extract phrase with a set of built-

in genealogically oriented Format Variants (FVs) of proper names 

and dates. Format variants are automatically augmented by new 

tag sequences from templates added to their class. Fig. 1 shows an 

example of their flexibility. To monitor progress, the user may 

inspect any page or line of the book showing the text tokens, their 

tags, assigned classes and the responsible templates (Fig. 2). 

Fig. 1.  Some token sequences matched by format variants for 

birth dates and places. Two templates, one for birth date and 

one for birthplace, suffice to extract all these configurations. 

The algorithm for template matching is based on the order 

constraints of semi-structured text. These are formally defined in 

[2] in terms of the signs and values sought to match a template’s 

search and extract phrase. The constraints require that a sign and 

its value must be in the same family record; signs and values 

alternate; different classes cannot share the same sign and value; 

and if values conflict, the nearest preceding sign prevails. 

The program finds every sequence number in the text where 

either a search phrase or a format variant (of an extract phrase) 

match the text, then lists the pairs of sequence numbers where the 

class of a variant and of the preceding search phrase match.  The 

patient reader can follow these critical steps in Fig. 3 and in the 

simplified pseudocode of Fig. 4.  

The initial templates usually yield 85%-95% recall with >99% 

precision. Rather than quit here, the operator may request 

recommendations for additional templates from the 

Autosuggestion routines.  

page 576 line 40 first SeqNo 92930 

"243356 . Julia Ely Hyde , Marion , Perry Co. , Ala . , b . 1824 , ' dau . of EOL" 

"NUM6 . CAP CAP CAP , CAP , CAP CAP , CAP . , b . YEAR , PUNCT PROG . PREP EOL" 

NN NN HEAD: HEAD: HEAD: NN NN NN NN NN NN NN NN NN NN NN B_DATE: NN NN NN NN NN EOL 

nn nn T_5 T_5 T_5 nn nn nn nn nn nn nn nn nn nn nn T_7 nn nn nn nn nn nn 

page 576 line 41 first SeqNo 92953 

"Julia Ely and Zabdial Hyde ; m . 1844 , Alexander Clark Bunker , who EOL" 

"CAP CAP and CAP CAP PUNCT m . YEAR , CAP CAP CAP , who EOL" 

PARENT1: PARENT1: NN PARENT2: PARENT2: NN NN NN M_DATE: NN SPOUSE: SPOUSE: SPOUSE: NN NN EOL 

T_2 T_2 nn T_6 T_6 nn nn nn T_9 nn T_3 T_3 T_3 nn nn nn 

Fig. 2.  Two lines of text labeled by HEAD, BIRTHDATE, PARENT1, PARENT2, MARRIAGEDATE and SPOUSE templates. 

 Matched tokens, tags, classes and template IDs are red boldface. NN and nn stand for None. 

b Ohio

b Carlisle PA

b VanBurenTwp Dke Co OH

b 14 Nov 1861 Miami Co OH

b 1 Sept 1913 Twin Twp Dke Co OH EOL

b 30 July 1854

b 1823



HP ’21, September 5, 2021 Lausanne, Helvetia G. Nagy 

Adam , James , and Jannet Bannatyne , in Hair Lavvis , 1676 EOL 

James , 15 Dec. 1672 . EOL      

Robert , 15 Oct. 1676 . EOL     

 (a) 

Sorted_SeqNo_SPandFV list (52339 rows) 
SeqNo, [[FVclass, FVlength], [FVclass, FVlength],  ...] 

 OR SeqNo, [[TemplateID, SPclass, SPlength], [TemplateID, SPclass, SPlength], ...] 
EOL [44, [[1, 'HEAD:', 4], [5, 'CHILD:', 3]]] 
Adams [45, [['HEAD:', 3], ['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]] 
James [47, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]      
, [48, [[2, 'SPOUSE:', 3]]] 
Janet [50, [['CHILD:', 2], ['M_PLACE:', 2], ['SPOUSE:', 2], ['TWINS:', 2], ['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]] 
Bannatyne [51, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]] 
Hair [54, [['CHILD:', 2], ['M_PLACE:', 2], ['SPOUSE:', 2], ['TWINS:', 2], ['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]] 
Lavvis [55, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]] 
1676 [57, [['B_DATE:', 1], ['C_DATE:', 1], ['M_DATE:', 1]]] 
EOL [58, [[5, 'CHILD:', 3], [6, 'C_DATE:', 4]]] 
Jaames [59, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]] 
15 [61, [['B_DATE:', 3], ['C_DATE:', 3], ['M_DATE:', 3], ['B_DATE:', 2], ['C_DATE:', 2], ['M_DATE:', 2]]] 
Dec. [62, [['B_DATE:', 2], ['C_DATE:', 2], ['M_DATE:', 2], ['CHILD:', 1]]] 
1672 [63, [['B_DATE:', 1], ['C_DATE:', 1], ['M_DATE:', 1]]] 
EOL [65, [[5, 'CHILD:', 3], [6, 'C_DATE:', 4]]] 
Robert [66, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]] 
15 [68, [['B_DATE:', 3], ['C_DATE:', 3], ['M_DATE:', 3], ['B_DATE:', 2], ['C_DATE:', 2], ['M_DATE:', 2]]] 

(b) 

Matched_SP_EP_List (30966 rows) 
 EPSeqNo, SPseqno, EPClass, EPlength, SPClass, TemplateID, SPlength] 
[45, 44, 'HEAD:', 3, 'HEAD:', 1,  , 4] 
[45, 44, 'CHILD:', 1, 'CHILD:', 5,  , 3] 
[50, 48, 'SPOUSE:', 2, 'SPOUSE:', 2,  , 3] 
[50, 48, 'SPOUSE:', 1, 'SPOUSE:', 2,  , 3] 
[59, 58, 'CHILD:', 1, 'CHILD:', 5,  , 3] 
[61, 58, 'C_DATE:', 3, 'C_DATE:', 6,  , 4] 
[61, 58, 'C_DATE:', 2, 'C_DATE:', 6,  , 4] 
[66, 65, 'CHILD:', 1, 'CHILD:', 5,  , 3] 
[68, 65, 'C_DATE:', 3, 'C_DATE:', 6,  , 4] 
[68, 65, 'C_DATE:', 2, 'C_DATE:', 6,  , 4] 

(c) 

Fig. 3 (a) Three book lines showing a HEAD (Adam, James), a SPOUSE (Jannet Bannatyne) and their first two children with 

their christening dates; (b) interspersed SPs and FVs sorted by sequence number, with their label, template ID, and phrase length; 

(c) selected (red) and unselected (black) same-label SP– FV pairs. The selected matches yield Extract Phrases. A token can be 

labeled only once. 

The Autosuggestion routines locate (a) unmatched extract 

phrases between consecutive matched search phrases, 

(b) unmatched tokens adjacent to same-tag matched tokens, and 

(c) unmatched tag sequences identical to either matched or 

unmatched sequences surrounded by the same tags. The program 

exploits its book-length statistics to sort the text snippets for new 

template candidates according to their expected coverage of 

hitherto unlabeled text. Only the user’s stamina limits further 

template construction, but on each book we stopped before 

reaching 20 templates (cf. Section 4). In earlier versions of 

GreenEx, 50-60 templates yielded inferior results).  

The output of the program is a list of family records of Labels, 

PageNos, LineNos, Token-offsets and Values, e.g.: 

HEAD:5,7,1 Adam, James SPOUSE:5,7,18 Jannet Bannatyne 

CHILD:5,8,1 James C_DATE:5,8,8 15 Dec. 1672 CHILD:5,9,1 Robert 

C_DATE:5,9,9 15,Oct. 1676 CHILD:5,10,1 Margaret 

C_DATE:5,10,11 6 April 1679 

Experimental Protocol and Results 

The three books that we processed, the Kilbarchan Register of 

Marriages and Baptisms [10], the Miller Funeral Home Records 

[11], and the Ely Ancestry [12], exhibit different arrangements 

and types of family factoids.  The entities of interest account for 

fewer than half of the tokens in each book. Assigning a label other 

than NONE to any other token is a Precision error. Irrelevant 

tokens accounted for almost every one of the few Precision errors. 
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Algorithm LabelTokens(BookText)  % Generate a list of family records from a list of page-length strings of characters 

%% Tokenize book text and tag tokenized text, template SPs & EPs, and format variants: (SPSearchPhrase, EPExtractPhrase) 

TokText Tokenizer(BookText) % NLTK.Tokenizer partitions the text into tokens,   e.g…b. 1753 , Hilltown … 

TaggedTextTagger(TokText)  % TaggedText is a parallel book-length list of tags, e.g. b. YEAR PUNCT CAP… 

Read Templates % Templates[k] = [TempID, TempLabel, [SP], [EP]]; e.g. = [6, B_Date, [b.], [1753]] 

Read Variants  %  e.g. Variants[3] = [[B_Date, M_Date, D_Date], [[1753], [April 15 , 1750], [15 April 1750]]] 

% Prepare lists of unique tagged SPs and format variants for efficient search: 

TaggedSPsSPSorter(ListTemplates) % TaggedSPs lists the labels of templates with tagged SP = TagSP 

% e.g. TaggedSPs[5][[b.], [[6, B_Date],[9, B_Place]]] 

TaggedVariantsVariantSorter(ListVariants)  % TaggedVariants lists the (unique) variants and their labels 

% e.g. TaggedVariants[8][[NUM, CAP, YEAR], [B_Date, M_Date, D_Date]] 

%% Find every location in the text where either a SP or an EP variant matches:  

For x1 to length (TaggedText):     % for every tag in the tokenized text 

For s11 to length(TaggedSPs):     % for every distinct tagged SP 

For s21 to length(TaggedSPs[s1][0]): % for every tag in this SP 

If TaggedText[x + s2] = TaggedSPs[s1][0][s2]]: break % if this SP does not fit book tags here, try next SP 

End  For s2 

CandSeqNos.Append ([x, TaggedSPs[s1][1] ])  % this SP fits here 

% Add seqno, TemplateID and label; e.g. Candidates[323 [2245, [6, B_Date], [ 9, B_Place]] 

End For s1 

For t11 to length(TaggedVaars) % for every tagged variant 

For t21 to length(TaggedVariants[t1][0]) % for every tag in this variant 

If TaggedText[x+ t2]=TaggedVariants[t1][0][t2]: break % if it does not fit biotags here, try next variant 

End  For t2 

Candidates.Append ([x, TaggedVariants [t1][1]) ] % this extract variant fits here 

% Add seqno and labels to Candidates, e.g. Candidates[324 [2248, [B_Date], [M_Date], [D_Date]] 

End For t1 

End For x 

%% Make a list of sequence numbers where the class of a variant and the class of the preceding SP match 

For y11 to length(Candidates): % for every seqno where a SP or a variant fit 

If IsInteger(Candidates[y1][1][0]) % i.e., if this is an SP (it has a template ID) 

For y21 to length(Candidates[y1][1]  % for every class whose SP fits here 

For y3y1 to MaxDist % for every candidate seqno starting at last SP 

If Candidates[y3] is a SP: break % if no EP found before the next SP 

For y41 to length [Candidates[y2[1]  % for every class whose variant fits here 

If Candidates[y3][1[y4] = Candidates[y1][1]y2] % if class of variant = class of SP  

MatchList.append([y3, Candidates[y3][1[y4] ]) % add this seqno and class to Match List 

For y1 to length(MatchList): % label every seqno listed in MatchList 

If LabeledText[SeqNo] = “NONE”  % if this token at this seqno  is not labeled yet 

LabeledText[SeqNo] MatchList [y][1]  %then label it e.g. LabeledText[2248] B_Date 

End  y 

%% Prepare list of families of labeled groups of tokens for output file: 

FamilyRecordGroupLabels(LabeledText)  % group EPs with identical consecutive labels and 

%  add label and Page-Line-Offset to each group 

E.g. [[Head, P4 L5 O1, Adams, James], [Spouse P4 L5 O5 Janet Leigh], [Child P4 L6 O1]], [[Head, P4 L7…, 

Return(FamilyRecord) 

Fig. 4 Pseudo-code for Generalized Template Matching 
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Most typesetting or OCR search-phrase errors, like h  for b, 

(or bom for born)  are detected by Autosuggestions and fixed by 

adding an alias. Transcription errors in extracts, like 164S are 

detected, but we cannot tell if it should be 1648 or 1645.  

I started on each book with a minimal number of templates 

constructed from a single page. Then I added templates with 

Autosuggestions until each new template yielded only one or two 

matches. The program processed the entire book, except front and 

back pages without family lists. Precision and Recall on the Test 

Set (the pages for which I had ground truth) was evaluated by a 

separate program, but I inspected every flagged error and reject. 

There were too few for credible analysis. Adding more templates 

with Autosuggestions, or trying alternative algorithms,  would be 

futile without far more ground truth because one could not make 

statistically valid estimates of even higher Precision and Recall.  

Table 1 summarizes the extraction results on the three books 

and the precision and recall on the corresponding test data. Fig.5 

graphs the increase in precision and recall on the Kiilbarchan test 

set as I added new templates from elsewhere in the book. It 

appears that one generalized template per class can cover the bulk 

of the book. Table 2 lists the recorded user-time taken by the 

various tasks on the same book. The addition of format variants 

and Autosuggestions expedited the template construction that took 

most of the time in earlier versions of GreenEx (Fig. 6).    

GreenEx generates output in several formats for diagnostics, 

experiment records, validation against ground truth, and relation 

extraction. I used Python’s hashed dictionaries to manipulate lists 

of tokens, tags, templates, variants, literals, aliases and book 

coordinates. Execution time is approximately proportional to the 

product of the length of the text and the number of templates. 

Runtimes on a 2.4-GHz Dell Optiplex 7010 ranged from 15 to 50 

seconds per book. A zip-file of all of our experiment records, as 

well as the python and VBA code, are available on request to 

educators and researchers. 

Table 1. Data and Results. 

Fig 5. Increase in precision, recall and F-measure with 

templates. The last seven templates were added with the 

evaluation program run on the test set only at the end. 

Table 2.  User-time (minutes) by task (Kilbrchan) 

Task Time Notes 

Browse new book 40 Locate common constructs and 

front/back pages w/o data  

Cut-and-paste  directory and 

files names 

5 Home directory, Text-files. 

Out directory, ClickEx 

Initialize ClickEx and select a 
representative page  

22 Enter (11) literals and (12) 
aliases 

Compile (9) place format 

variants (common date & 

name variants are already in 
GreenEx)) 

14 Additional  format variants 

from templates may be added 

automatically in  the next two 
steps 

Enter one template for each 

class  from selected page 

9 Logged by ClickEx 

Enter (13) additional templates 
from auto-suggestion routines   

16 Logged by ClickEx 

Edit (2) templates based on 

book-length template-usage 
statistics 

12 Logged by ClickEx 

Re-run GreenEx to generate 

output files 

5 Logged GreenEx run-time: 32 

seconds. 

    TOTAL 123 Totals  for other books within 
20% 

Fig 6. Snapshot of ClickEx GUI, from [1], added at a referee’s 

suggestion. After launching a page-text display, each template 

requires 2 clicks for the SP, 2 for the EP, and 1 for the class. 

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17

Performance against number of templates

Precision Recall F-measure

Book Kilbarchan Miller Ely

pages 139 389 301

lines 9296 16040 10446

tokens (inc. EOLs) 82577 239135 151371

templates 17 18 14

labeled tokens 39203 91633 39440

family records 14789 15674 3379

classes 8 10 8

Test Data

pages 6 6 6

lines 356 268 243

tokens (inc. EOLs) 3126 3842 3423

  Precision 0.999 0.996 0.997

  Recall 0.972 0.988 0.980

  F-measure 0.985 0.992 0.988
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5 Conclusion 

Much of my career was devoted to neural networks, statistical 

pattern recognition and machine learning. So these struck me as 

the obvious approaches to information extraction from 

genealogical books.  It was a major surprise that adding a few 

NLP twists to template matching, and providing instant user 

guidance by statistical analysis of partially processed text, would 

let such a mundane approach leave long short-term memory 

recurrent networks and other resource and data intensive 

machinery as unpromising alternatives.  

One argument in favor of interaction instead of training is that 

a few user clicks can resolve ambiguities like m. for “mother” in 

one book vs. m. for “married” in another. Any neural network 

would require massive and perhaps customized training data. 

Another appealing aspect of interactive processing is its 

dependable, if increasingly sluggish, approach to perfect recall. 

This contrasts with the “take it or leave it” termination of most 

machine-learning algorithms. 

The experiments show that generalized template matching 

requires only modest user effort for near-complete recall of facts 

from semi-structured books. The same results could perhaps be 

reached, albeit with far more effort, using regular expressions. 

The relation between generalized template matching and REGEX 

is analogous to that between a high-level programming language 

and machine code. The essence of the difference is the nested 

search on tagged text illustrated in Fig. 3. 

Template matching on family books produces easily 

understood results, but it is a long-tailed process. Some 

typesetting anomalies or OCR errors require a new template or 

alias. It could take dozens of additional templates to halve the 

remaining 0.1% - 0,3% missing labels. Without information 

beyond the page-text files, one can only spot, but not 

automatically correct, typesetting and OCR errors.  Fortunately, 

most of the tags, literals, aliases and format variants depend only 

on the domain rather than each book. 

It is not obvious that complete manual key entry would 

produce better results, and it would be equally difficult to verify. 

In operational application, these issues can be addressed through 

downstream consistency checks (for missing, redundant or 

inconsistent dates and names), and by agglomerating results from 

multiple sources.  

Before pressing on to other scripts, languages and applications 

(like industrial  parts catalogs and municipal directories), we 

should find out what fraction of genealogical works “in the wild” 

conform to the semi-structure constraints that open the door to 

systematic processing. More OCR errors would increase the 

interaction necessary for high recall. It should, however, barely 

affect precision because a search phrase and its extract phrase will 

seldom fail in a complementary way (cf. the high precision at low 

recall in Fig. 5). Given the amount of digitized material awaiting 

processing, I am hesitant to follow a referee’s request to 

prognosticate about handwriting.  

We must also confirm that the skill level necessary for 

interacting with ClickEx and GreenEx does not exceed that of 

most genealogical software users.  
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