
Generalized Template Matching for Semi-structured Text

George Nagy
 Electrical, Computer, and Systems Engineering

 Rensselaer Polytechnic Institute

 Troy, NY, USA
 nagy@ecse.rpi.edu

ABSTRACT

Conventional template matching for named entity recognition on

book-length text strings is generalized by allowing search phrases

to capture distant tokens. Combined with word-type tagging and

format variants (alternative name/date formats), a few initial

templates (class—search-phrase—extract-phrase triples) can label

most of the significant tokens. The program then uses its book-

length statistics of tag-label associations to suggest candidate text

for further template construction. The method serves as a

preprocessor for error-free extraction of semantic relations from

text obeying explicit semi-structure constraints. On three sample

books of genealogical records, an F-measure of over 0.99 was

achieved with less than 3 hours’ user time on each book.

CCS CONCEPTS

• Information systems • Document representation • Document

structure • Content analysis

KEYWORDS

mask matching; tokenization; tagging; data formats; semi-

structure

1 Introduction

We revisit generalized template matching for named entity

recognition in family books. In contrast to machine learning and

neural networks, this approach requires no training or validation

data, explains every decision, and provides a natural path for

incremental improvement without post-processing. We present

recent improvements, answer some queries prompted by our

earlier communications, and lay the foundations for our

forthcoming report at ICDAR’21 on named relation extraction.

We were motivated to embark on this strand of research by a

long-time colleague’s participation in a much larger project at

FamilySearch. That project’s objective is the construction of a

pipeline from existing sources – current databases, books, census,

parish and military records, archival resources, even photographs

of tombstones – to a “universal” genealogical ontology. Yet

unexploited sources include over 300,000 already digitized family

books (published compendia compiled from the records of a

family, parish or town). They are typically a list of assorted facts

like names, dates and places presented as quasi-repetitive phrases

of keywords and targets with simple \ grammars.

The GreenEx method presented below aims at the rapid

extraction of desired facts from entire semi-structured books.

Tests on a test set of 18 random pages of 10,391 word tokens

yield an average F-measure of 0.993 and Precision of 0.998. We

are confident that these results are representative of the 819 pages

(35,782 lines and 473,083 tokens) from the three books that were

processed. Logged user time was under three hours and computer

run-time was under one minute for each book. The method is

applicable only to semi-structured text subject to explicit

constraints.

2 Prior Work

This presentation is intended to bridge generalized template

matching [1] and our report at the main conference on named

relation extraction [2]. These papers contain extensive (and

heavily overlapping) literature reviews, so here we mention only

the most relevant items.

The Brigham Young University and FamilySearch team

presented their research at the first HIP Workshop [3]. Their

ontology-based system is more fully described in [4], which also

proposes seven alternatives for fact and relation extraction from

structured text: (1) Extraction Rule Creation with Data Frames;

(2) Template Matching with hand-crafted Regular Expressions;

(3) Construction of Regular Expressions from Form Filling

Example (the REGEX template matching scheme of [5]); (4)

Extraction Rule Learning by Text Snippet Examples (based on an

early version of GreenEx [6, 7]); (5) Extraction Rule Learning by

Text Pattern Discovery; (6) Machine Learning of Extraction

Rules; and (7) Extraction Rule Creation by Natural Language

Processing and Cognitive Reasoning. Perhaps because of

FamilySearch’s far broader objectives, we have not yet seen any

results directly commensurable with ours.

Researchers from our community combined entity and relation

extraction with handwriting recognition. In [8], a category-based

language model is compared with a probabilistic finite-state

machine model for labeling family roles in handwritten 17th

https://doi.org/10.1145/1234567890

HIP ’21, September 05, 06, 2021, Lausanne, Switzerland
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8690-6/21/09. . . $15.00
https://doi.org/10.1145/3476887.3476895 This is a pre-publication version

HP ’21, September 5, 2021 Lausanne, Helvetia G. Nagy

Century Catalan marriage records. With a large fraction (6/7) of

the 173-pages used for training, and seven-fold cross-validation,

both methods yielded 70-80% Precision and Recall. Information

extraction was also the topic of a 2017 ICDAR competition.

Using neural networks and conditional random fields, the winning

team from Harbin Institute of Technology achieved a character

error rate of ~8% on the same database, but 100 of 125 pages had

to be manually labeled for training and validation [9].

We reported the progress of GreenEx, on comparable test data,

from F-measure = ~95% in [6] and [7] to 98% in [1]. The

improvement was due mainly to the introduction of format

variants. The major shortcoming in [1] was inflexible templates.

The current communication shows that allowing extracts to

“float” at arbitrary distance from their search phrase raises the

average F-measure to 99.3%, using less than half as many

templates. Although our focus is on user time, we also present an

algorithmic twist that cuts runtime by 50%.

3 Method

GreenEx tokenizes the unicode OCR output and assigns a

Sequence Number and a Tag to every token. Fifteen generic tags

are based on the token’s characters: type case, letter/numeric,

punctuation, and hyphen. They are augmented by book-specific,

user-assigned literals like born and died that serve as their own

tag, and by built-in or user-specified aliases like b. born,

month {January, Jan., February …}, progeny

 {child, children, son, daughter, dau.} or

prep {in, at, to, from…}.

The user’s primary task is the specification of a set of initial

templates via the ClickEx GUI [1]. Each Template consists of a

Search Phrase and an Extract Phrase that appear in the text, and a

Class chosen by the user. The operator clicks on the first and last

tokens of a pair of suitable phrases, and on a pop-up list of Class

Labels. An Extract Phrase may be located in the text several lines

beyond its Search Phrase. The GUI validates the click sequence

(or requests correction), assigns a Template ID, stores the

template, and logs the user actions. An example of a template is:

[T3; Parent1; son of; Elisha Mills Ely].

GreenEx then tags the search and extract phrases of the

templates. It also associates each extract phrase with a set of built-

in genealogically oriented Format Variants (FVs) of proper names

and dates. Format variants are automatically augmented by new

tag sequences from templates added to their class. Fig. 1 shows an

example of their flexibility. To monitor progress, the user may

inspect any page or line of the book showing the text tokens, their

tags, assigned classes and the responsible templates (Fig. 2).

Fig. 1. Some token sequences matched by format variants for

birth dates and places. Two templates, one for birth date and

one for birthplace, suffice to extract all these configurations.

The algorithm for template matching is based on the order

constraints of semi-structured text. These are formally defined in

[2] in terms of the signs and values sought to match a template’s

search and extract phrase. The constraints require that a sign and

its value must be in the same family record; signs and values

alternate; different classes cannot share the same sign and value;

and if values conflict, the nearest preceding sign prevails.

The program finds every sequence number in the text where

either a search phrase or a format variant (of an extract phrase)

match the text, then lists the pairs of sequence numbers where the

class of a variant and of the preceding search phrase match. The

patient reader can follow these critical steps in Fig. 3 and in the

simplified pseudocode of Fig. 4.

The initial templates usually yield 85%-95% recall with >99%

precision. Rather than quit here, the operator may request

recommendations for additional templates from the

Autosuggestion routines.

page 576 line 40 first SeqNo 92930

"243356 . Julia Ely Hyde , Marion , Perry Co. , Ala . , b . 1824 , ' dau . of EOL"

"NUM6 . CAP CAP CAP , CAP , CAP CAP , CAP . , b . YEAR , PUNCT PROG . PREP EOL"

NN NN HEAD: HEAD: HEAD: NN NN NN NN NN NN NN NN NN NN NN B_DATE: NN NN NN NN NN EOL

nn nn T_5 T_5 T_5 nn nn nn nn nn nn nn nn nn nn nn T_7 nn nn nn nn nn nn

page 576 line 41 first SeqNo 92953

"Julia Ely and Zabdial Hyde ; m . 1844 , Alexander Clark Bunker , who EOL"

"CAP CAP and CAP CAP PUNCT m . YEAR , CAP CAP CAP , who EOL"

PARENT1: PARENT1: NN PARENT2: PARENT2: NN NN NN M_DATE: NN SPOUSE: SPOUSE: SPOUSE: NN NN EOL

T_2 T_2 nn T_6 T_6 nn nn nn T_9 nn T_3 T_3 T_3 nn nn nn

Fig. 2. Two lines of text labeled by HEAD, BIRTHDATE, PARENT1, PARENT2, MARRIAGEDATE and SPOUSE templates.

 Matched tokens, tags, classes and template IDs are red boldface. NN and nn stand for None.

b Ohio

b Carlisle PA

b VanBurenTwp Dke Co OH

b 14 Nov 1861 Miami Co OH

b 1 Sept 1913 Twin Twp Dke Co OH EOL

b 30 July 1854

b 1823

HP ’21, September 5, 2021 Lausanne, Helvetia G. Nagy

Adam , James , and Jannet Bannatyne , in Hair Lavvis , 1676 EOL

James , 15 Dec. 1672 . EOL

Robert , 15 Oct. 1676 . EOL

 (a)

Sorted_SeqNo_SPandFV list (52339 rows)
SeqNo, [[FVclass, FVlength], [FVclass, FVlength], ...]

 OR SeqNo, [[TemplateID, SPclass, SPlength], [TemplateID, SPclass, SPlength], ...]
EOL [44, [[1, 'HEAD:', 4], [5, 'CHILD:', 3]]]
Adams [45, [['HEAD:', 3], ['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
James [47, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
, [48, [[2, 'SPOUSE:', 3]]]
Janet [50, [['CHILD:', 2], ['M_PLACE:', 2], ['SPOUSE:', 2], ['TWINS:', 2], ['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
Bannatyne [51, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
Hair [54, [['CHILD:', 2], ['M_PLACE:', 2], ['SPOUSE:', 2], ['TWINS:', 2], ['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
Lavvis [55, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
1676 [57, [['B_DATE:', 1], ['C_DATE:', 1], ['M_DATE:', 1]]]
EOL [58, [[5, 'CHILD:', 3], [6, 'C_DATE:', 4]]]
Jaames [59, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
15 [61, [['B_DATE:', 3], ['C_DATE:', 3], ['M_DATE:', 3], ['B_DATE:', 2], ['C_DATE:', 2], ['M_DATE:', 2]]]
Dec. [62, [['B_DATE:', 2], ['C_DATE:', 2], ['M_DATE:', 2], ['CHILD:', 1]]]
1672 [63, [['B_DATE:', 1], ['C_DATE:', 1], ['M_DATE:', 1]]]
EOL [65, [[5, 'CHILD:', 3], [6, 'C_DATE:', 4]]]
Robert [66, [['CHILD:', 1], ['M_PLACE:', 1], ['SPOUSE:', 1], ['TWINS:', 1]]]
15 [68, [['B_DATE:', 3], ['C_DATE:', 3], ['M_DATE:', 3], ['B_DATE:', 2], ['C_DATE:', 2], ['M_DATE:', 2]]]

(b)

Matched_SP_EP_List (30966 rows)
 EPSeqNo, SPseqno, EPClass, EPlength, SPClass, TemplateID, SPlength]
[45, 44, 'HEAD:', 3, 'HEAD:', 1, , 4]
[45, 44, 'CHILD:', 1, 'CHILD:', 5, , 3]
[50, 48, 'SPOUSE:', 2, 'SPOUSE:', 2, , 3]
[50, 48, 'SPOUSE:', 1, 'SPOUSE:', 2, , 3]
[59, 58, 'CHILD:', 1, 'CHILD:', 5, , 3]
[61, 58, 'C_DATE:', 3, 'C_DATE:', 6, , 4]
[61, 58, 'C_DATE:', 2, 'C_DATE:', 6, , 4]
[66, 65, 'CHILD:', 1, 'CHILD:', 5, , 3]
[68, 65, 'C_DATE:', 3, 'C_DATE:', 6, , 4]
[68, 65, 'C_DATE:', 2, 'C_DATE:', 6, , 4]

(c)

Fig. 3 (a) Three book lines showing a HEAD (Adam, James), a SPOUSE (Jannet Bannatyne) and their first two children with

their christening dates; (b) interspersed SPs and FVs sorted by sequence number, with their label, template ID, and phrase length;

(c) selected (red) and unselected (black) same-label SP– FV pairs. The selected matches yield Extract Phrases. A token can be

labeled only once.

The Autosuggestion routines locate (a) unmatched extract

phrases between consecutive matched search phrases,

(b) unmatched tokens adjacent to same-tag matched tokens, and

(c) unmatched tag sequences identical to either matched or

unmatched sequences surrounded by the same tags. The program

exploits its book-length statistics to sort the text snippets for new

template candidates according to their expected coverage of

hitherto unlabeled text. Only the user’s stamina limits further

template construction, but on each book we stopped before

reaching 20 templates (cf. Section 4). In earlier versions of

GreenEx, 50-60 templates yielded inferior results).

The output of the program is a list of family records of Labels,

PageNos, LineNos, Token-offsets and Values, e.g.:

HEAD:5,7,1 Adam, James SPOUSE:5,7,18 Jannet Bannatyne

CHILD:5,8,1 James C_DATE:5,8,8 15 Dec. 1672 CHILD:5,9,1 Robert

C_DATE:5,9,9 15,Oct. 1676 CHILD:5,10,1 Margaret

C_DATE:5,10,11 6 April 1679

Experimental Protocol and Results

The three books that we processed, the Kilbarchan Register of

Marriages and Baptisms [10], the Miller Funeral Home Records

[11], and the Ely Ancestry [12], exhibit different arrangements

and types of family factoids. The entities of interest account for

fewer than half of the tokens in each book. Assigning a label other

than NONE to any other token is a Precision error. Irrelevant

tokens accounted for almost every one of the few Precision errors.

HP ’21, September 5, 2021 Lausanne, Helvetia G. Nagy

Algorithm LabelTokens(BookText) % Generate a list of family records from a list of page-length strings of characters

%% Tokenize book text and tag tokenized text, template SPs & EPs, and format variants: (SPSearchPhrase, EPExtractPhrase)

TokText Tokenizer(BookText) % NLTK.Tokenizer partitions the text into tokens, e.g…b. 1753 , Hilltown …

TaggedTextTagger(TokText) % TaggedText is a parallel book-length list of tags, e.g. b. YEAR PUNCT CAP…

Read Templates % Templates[k] = [TempID, TempLabel, [SP], [EP]]; e.g. = [6, B_Date, [b.], [1753]]

Read Variants % e.g. Variants[3] = [[B_Date, M_Date, D_Date], [[1753], [April 15 , 1750], [15 April 1750]]]

% Prepare lists of unique tagged SPs and format variants for efficient search:

TaggedSPsSPSorter(ListTemplates) % TaggedSPs lists the labels of templates with tagged SP = TagSP

% e.g. TaggedSPs[5][[b.], [[6, B_Date],[9, B_Place]]]

TaggedVariantsVariantSorter(ListVariants) % TaggedVariants lists the (unique) variants and their labels

% e.g. TaggedVariants[8][[NUM, CAP, YEAR], [B_Date, M_Date, D_Date]]

%% Find every location in the text where either a SP or an EP variant matches:

For x1 to length (TaggedText): % for every tag in the tokenized text

For s11 to length(TaggedSPs): % for every distinct tagged SP

For s21 to length(TaggedSPs[s1][0]): % for every tag in this SP

If TaggedText[x + s2] = TaggedSPs[s1][0][s2]]: break % if this SP does not fit book tags here, try next SP

End For s2

CandSeqNos.Append ([x, TaggedSPs[s1][1]]) % this SP fits here

% Add seqno, TemplateID and label; e.g. Candidates[323 [2245, [6, B_Date], [9, B_Place]]

End For s1

For t11 to length(TaggedVaars) % for every tagged variant

For t21 to length(TaggedVariants[t1][0]) % for every tag in this variant

If TaggedText[x+ t2]=TaggedVariants[t1][0][t2]: break % if it does not fit biotags here, try next variant

End For t2

Candidates.Append ([x, TaggedVariants [t1][1])] % this extract variant fits here

% Add seqno and labels to Candidates, e.g. Candidates[324 [2248, [B_Date], [M_Date], [D_Date]]

End For t1

End For x

%% Make a list of sequence numbers where the class of a variant and the class of the preceding SP match

For y11 to length(Candidates): % for every seqno where a SP or a variant fit

If IsInteger(Candidates[y1][1][0]) % i.e., if this is an SP (it has a template ID)

For y21 to length(Candidates[y1][1] % for every class whose SP fits here

For y3y1 to MaxDist % for every candidate seqno starting at last SP

If Candidates[y3] is a SP: break % if no EP found before the next SP

For y41 to length [Candidates[y2[1] % for every class whose variant fits here

If Candidates[y3][1[y4] = Candidates[y1][1]y2] % if class of variant = class of SP

MatchList.append([y3, Candidates[y3][1[y4]]) % add this seqno and class to Match List

For y1 to length(MatchList): % label every seqno listed in MatchList

If LabeledText[SeqNo] = “NONE” % if this token at this seqno is not labeled yet

LabeledText[SeqNo] MatchList [y][1] %then label it e.g. LabeledText[2248] B_Date

End y

%% Prepare list of families of labeled groups of tokens for output file:

FamilyRecordGroupLabels(LabeledText) % group EPs with identical consecutive labels and

% add label and Page-Line-Offset to each group

E.g. [[Head, P4 L5 O1, Adams, James], [Spouse P4 L5 O5 Janet Leigh], [Child P4 L6 O1]], [[Head, P4 L7…,

Return(FamilyRecord)

Fig. 4 Pseudo-code for Generalized Template Matching

HP ’21, September 5, 2021 Lausanne, Helvetia G. Nagy

Most typesetting or OCR search-phrase errors, like h for b,

(or bom for born) are detected by Autosuggestions and fixed by

adding an alias. Transcription errors in extracts, like 164S are

detected, but we cannot tell if it should be 1648 or 1645.

I started on each book with a minimal number of templates

constructed from a single page. Then I added templates with

Autosuggestions until each new template yielded only one or two

matches. The program processed the entire book, except front and

back pages without family lists. Precision and Recall on the Test

Set (the pages for which I had ground truth) was evaluated by a

separate program, but I inspected every flagged error and reject.

There were too few for credible analysis. Adding more templates

with Autosuggestions, or trying alternative algorithms, would be

futile without far more ground truth because one could not make

statistically valid estimates of even higher Precision and Recall.

Table 1 summarizes the extraction results on the three books

and the precision and recall on the corresponding test data. Fig.5

graphs the increase in precision and recall on the Kiilbarchan test

set as I added new templates from elsewhere in the book. It

appears that one generalized template per class can cover the bulk

of the book. Table 2 lists the recorded user-time taken by the

various tasks on the same book. The addition of format variants

and Autosuggestions expedited the template construction that took

most of the time in earlier versions of GreenEx (Fig. 6).

GreenEx generates output in several formats for diagnostics,

experiment records, validation against ground truth, and relation

extraction. I used Python’s hashed dictionaries to manipulate lists

of tokens, tags, templates, variants, literals, aliases and book

coordinates. Execution time is approximately proportional to the

product of the length of the text and the number of templates.

Runtimes on a 2.4-GHz Dell Optiplex 7010 ranged from 15 to 50

seconds per book. A zip-file of all of our experiment records, as

well as the python and VBA code, are available on request to

educators and researchers.

Table 1. Data and Results.

Fig 5. Increase in precision, recall and F-measure with

templates. The last seven templates were added with the

evaluation program run on the test set only at the end.

Table 2. User-time (minutes) by task (Kilbrchan)

Task Time Notes

Browse new book 40 Locate common constructs and

front/back pages w/o data

Cut-and-paste directory and

files names

5 Home directory, Text-files.

Out directory, ClickEx

Initialize ClickEx and select a
representative page

22 Enter (11) literals and (12)
aliases

Compile (9) place format

variants (common date &

name variants are already in
GreenEx))

14 Additional format variants

from templates may be added

automatically in the next two
steps

Enter one template for each

class from selected page

9 Logged by ClickEx

Enter (13) additional templates
from auto-suggestion routines

16 Logged by ClickEx

Edit (2) templates based on

book-length template-usage
statistics

12 Logged by ClickEx

Re-run GreenEx to generate

output files

5 Logged GreenEx run-time: 32

seconds.

 TOTAL 123 Totals for other books within
20%

Fig 6. Snapshot of ClickEx GUI, from [1], added at a referee’s

suggestion. After launching a page-text display, each template

requires 2 clicks for the SP, 2 for the EP, and 1 for the class.

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17

Performance against number of templates

Precision Recall F-measure

Book Kilbarchan Miller Ely

pages 139 389 301

lines 9296 16040 10446

tokens (inc. EOLs) 82577 239135 151371

templates 17 18 14

labeled tokens 39203 91633 39440

family records 14789 15674 3379

classes 8 10 8

Test Data

pages 6 6 6

lines 356 268 243

tokens (inc. EOLs) 3126 3842 3423

 Precision 0.999 0.996 0.997

 Recall 0.972 0.988 0.980

 F-measure 0.985 0.992 0.988

HP ’21, September 5, 2021 Lausanne, Helvetia G. Nagy

5 Conclusion

Much of my career was devoted to neural networks, statistical

pattern recognition and machine learning. So these struck me as

the obvious approaches to information extraction from

genealogical books. It was a major surprise that adding a few

NLP twists to template matching, and providing instant user

guidance by statistical analysis of partially processed text, would

let such a mundane approach leave long short-term memory

recurrent networks and other resource and data intensive

machinery as unpromising alternatives.

One argument in favor of interaction instead of training is that

a few user clicks can resolve ambiguities like m. for “mother” in

one book vs. m. for “married” in another. Any neural network

would require massive and perhaps customized training data.

Another appealing aspect of interactive processing is its

dependable, if increasingly sluggish, approach to perfect recall.

This contrasts with the “take it or leave it” termination of most

machine-learning algorithms.

The experiments show that generalized template matching

requires only modest user effort for near-complete recall of facts

from semi-structured books. The same results could perhaps be

reached, albeit with far more effort, using regular expressions.

The relation between generalized template matching and REGEX

is analogous to that between a high-level programming language

and machine code. The essence of the difference is the nested

search on tagged text illustrated in Fig. 3.

Template matching on family books produces easily

understood results, but it is a long-tailed process. Some

typesetting anomalies or OCR errors require a new template or

alias. It could take dozens of additional templates to halve the

remaining 0.1% - 0,3% missing labels. Without information

beyond the page-text files, one can only spot, but not

automatically correct, typesetting and OCR errors. Fortunately,

most of the tags, literals, aliases and format variants depend only

on the domain rather than each book.

It is not obvious that complete manual key entry would

produce better results, and it would be equally difficult to verify.

In operational application, these issues can be addressed through

downstream consistency checks (for missing, redundant or

inconsistent dates and names), and by agglomerating results from

multiple sources.

Before pressing on to other scripts, languages and applications

(like industrial parts catalogs and municipal directories), we

should find out what fraction of genealogical works “in the wild”

conform to the semi-structure constraints that open the door to

systematic processing. More OCR errors would increase the

interaction necessary for high recall. It should, however, barely

affect precision because a search phrase and its extract phrase will

seldom fail in a complementary way (cf. the high precision at low

recall in Fig. 5). Given the amount of digitized material awaiting

processing, I am hesitant to follow a referee’s request to

prognosticate about handwriting.

We must also confirm that the skill level necessary for

interacting with ClickEx and GreenEx does not exceed that of

most genealogical software users.

ACKNOWLEDGMENTS

I am grateful for sustained help to my decades-long friend and

collaborator, BYU Emeritus Professor David W. Embley, and to

his expert colleagues at BYU and FamilySearch. This paper also

benefited from the referees’ thoughtful suggestions.

REFERENCES

[1] G. Nagy, Green information extraction from family books. Springer Nature

Computer Science, Volume 1, Issue 1, January 2020.

[2] G. Nagy, Near-perfect Relation Extraction from Family Books, 16th ICDAR,

Lausanne, accepted, 2021.

[3] D. W. Embley, T. Packer, J. Park, A. Zitzelberger, S. W. Liddle, N. Tate, D.

W. Lonsdale,, Enabling search for facts and implied facts in historical

documents, Proc. Workshop on Historical Document Imaging and Processing,

59–66, Beijing, China 2011.

[4] D.W. Embley D.W. Lonsdale S.N. Woodfield, Ontological Document

Reading: An Experience Report, Enterprise Modelling and Information

Systems Architectures: International Journal of Conceptual Modeling, Vol. 13,

133–181, 2018.

[5] T. Kim. A green form-based information extraction system for historical

documents. MA thesis, Brigham Young University, Provo, Utah, 2017.

[6] D.W. Embley and G. Nagy, Extraction rule creation by text snippet examples,

Family History Technology Workshop, Provo, UT, 2018.

[7] D.W. Embley and G. Nagy, Green interaction for extracting family

information from OCR’d books, Document Analysis Systems Workshop

(DAS’18), Vienna, Austria April 2018.

[8] V. Romero, A. Fornes, E. Vidal, and J.A. Sanchez, Using the MGGI

Methodology for Category-based Language Modeling in Handwritten

Marriage Licenses Books, Procs. 15th International Conference on Frontiers in

Handwriting Recognition, Shenzhen, China (2016).

[9] 9 A. Fornes, V. Romero, A Baro, J.I. Toledo, J.A. Sanchez, E. Vidal, J.

Llados, ICDAR 2017 Competition on Information Extraction in Historical

Handwritten Records, Proc.s 14th IAPR International Conference on

Document Analysis and Recognition, Kyoto, Japan (2017).

[10] F.J. Grant (editor), Index to The Register of Marriages and Baptisms in the

PARISH OF KILBARCHAN, 1649 –1772. J. Skinner & Company, LTD,

Edinburgh, Scotland, 1912.

[11] Miller Funeral Home Records, 1917–1950, Greenville, Ohio. Darke County

Ohio Genealogical Society, Greenville, Ohio, 1990.

[12] G. Vanderpoel The Ely Ancestry: Lineage of RICHARD ELY of Plymouth,

England. The Calumet Press, New York, NY 1902.

