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Abstract— Individuals, institutions and even cities and 
countries are often ranked according to some linear weighting of 
their attributes.  Under commonly prevailing conditions, it is 
possible to find weights that give top rank to most arbitrarily 
designated entries. The number of entries may exceed the 
number of attributes by orders of magnitude. Necessary and 
sufficient conditions on the subject-attribute matrix are derived 
in terms of one-against-all halfplane dichotomies and convex 
hulls. Pairwise attribute difference vectors are more effective 
than attribute vectors for one-against-all classification. 
Comparisons of MeFirst algorithms based on neural networks 
and on linear programming (LP), on datasets drawn from 
published rankings of scientists and universities, show that on 
these tasks, LP is significantly faster.  

Keywords— normalization; dimensional augmentation; 
halfspace dichotomy; unbalanced classes 

I.  INTRODUCTION 
Given a list of M items, each represented by N attributes, it 

is often possible to find a set of weights for ranking an 
arbitrarily selected item such that the weighted sum of the 
attributes places it on top of the list.  We define an item as 
MeFirst Eligible if such a set of weights exists. With these 
weights, the weighted sum of the selected item must be larger 
than the weighted sum of any other item. Thus, determining 
that an item is MeFirst eligible can be reduced to a one-against-
all linear separability problem.  

Checking linear separability can, in turn, be formulated 
either as a search for a feasible solution in a linear 
programming (LP) framework, or as error-free binary 
classification by a single-layer neural network (NN). 
Normalization of the attribute vectors to unit length and 
conversion to halfplane classification (with a hyperplane 
through the origin) by dimension augmentation are often 
advocated to simplify and accelerate classification. We will 
show why such preprocessing may preclude a solution. 

Which M items with N attributes are MeFirst eligible? In 
two dimensions (N=2), any 3 points (M=3) in general positions 
(i.e., neither coincident nor collinear) are MeFirst eligible. 
More generally, if the M points are located on distinct vertices 
of a convex polygon, then they are all eligible.  If, however, m 
points are located inside the convex hull of the remaining M-m 
points, then these m points are not eligible. Below, we extend 

this argument to N>>2 and explain the surprising number of 
MeFirst eligible entries engendered by relatively few attributes 
in terms of known geometric properties of hyperspace. 

In most examples of binary classification – halfplane or 
other – the numbers of samples in either class are of the same 
order of magnitude. However, skew often arises in biomedical 
image processing and in anomaly detection. Unbalanced or 
skewed class membership hampers both statistical and neural 
classifiers. One-against-all is the extreme case of skew.  

A major contribution of this paper is the theoretical and 
experimental demonstration that the ill effects of skewed 
classification can be alleviated by half-plane classification of 
normalized pairwise difference vectors. A further contribution 
is a formal proof of necessary and sufficient conditions for 
MeFirst ranking. On the experimental side, we compare two 
LP and three NN solutions on sizeable published datasets. 
Although the thin-shell phenomenon of hyperspace geometry 
has been examined by others in the context of classification, we 
believe that we are the first to show its singular effect on one-
against-all dichotomies. 

We were prompted to examine these relationships by the 
recent compilation of the publication attributes and consequent 
rank-ordering of over 100,000 scientists. The ranking in the 
Citation Database is one of many possible rankings based on 
homogeneous linear weighting of the scientists’ attributes. The 
ranking problem led us to one-against-all halfspace 
dichotomies of pairwise difference vectors and to conditions 
for their solution by linear programming and single-layer 
neural networks. Aside from connecting ranking and 
classification, our results bear on skewed dichotomies from 
other sources. 

A. Terminology 

We will use the following terminology.  A dichotomy is any 
separation, linear or not, of samples into two classes. Halfspace 
classification means separation by a hyperplane. Unitomy is 
separation by a hyperplane through the origin. Negating the 
samples in the “negative” class in a unitomy flips them to the 
positive side of the hyperplane, thereby locating all the samples 
in the same halfspace (cf. Fig. 1). Classification via unitomy 
does not need ground truth for counting errors, because every 
sample that yields a negative weighted sum is an error.  
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               (a) (b) 

Fig. 1. (a) )ne-against-all dichotomy. (b) One-against-all unitomy. A unitomy 
can be generated from a linear dichotomy by dimensional augmentation. 

We define MeFirst ranking of M items according to N 
attributes as follows. Let A be the M×N attribute matrix with 
rows ak of attributes of item sk. and let W be the N×M weight 
matrix with columns wk = [wk,1, wk,2, …, wk,N]. Then item sk* is 
MeFirst Eligible if and only if the highest value of the k*th 
column of A×W is on the diagonal. The solution weights are 
not unique. In each ranking, we focus only on first-place and 
let the other items fall where they may. The toy example of 
Table 1, with M = 7 and N = 3, illustrates this property. 
Attributes can be called features or coordinates, weights are 
also coefficients, and classes can be categories or labels. 

B. Outline  
In Section II we give examples of MeFirst ranking based on 

weighted attributes and of other ways of ordering items.  In 
Section III we show that MeFirst Ranking is equivalent to a set 
of unitomies of pairwise difference vectors. In Section IV we 
prove a theorem about row normalization and column 
augmentation of the array of rankable entries and state 
necessary and sufficient conditions for the existence of a 
solution. In Section V we propose a geometric explanation of 
why the number of MeFirst eligible entries vastly exceeds 
hyperplane capacity. Sections VI describes LP and 
“perceptron” configurations for MeFirst ranking.  Section VII 
presents experimental support for the above claims and 
observations.  We summarize our results in the concluding 
section and suggest their applicability to other domains where 
unbalanced classification is the rule rather than the exception. 

Ranking and voting methods are social technologies. 
Concepts of linear separability, hyperplane capacity, 
classification by neural networks, and the asymptotic behavior 
of the convex hull of point sets can be traced back to the early 
days of pattern recognition, but are rarely discussed in the 
context of alternative rankings of attribute vectors. Linear 
separability issues were first raised by threshold functions. The 
geometric properties of high-dimensional spaces are part of 
computational geometry. Linear programing and machine 
learning belong to our own community. Given this diversity, 

we provide references’ to earlier work as we develop the 
connections instead of a dedicated literature review. 

II.     RANKING 
Just about everything is ranked: Fortune 500 companies 

according to their valuation, earnings, and number of 
employees; politicians by their votes or campaign funding; 
pitchers by ERA, IFIP and WHIP; countries by population, 
area, GDP and life expectancy; and scientists by various 
metrics like publication count and h-index. Ranking requires 
sorting the entries according to the values of an attribute or of 
some combination of attributes. Reaching the top rank often 
brings fame, money or other benefits.  

A. MeFirst Ranking 
We explore when and why weights can be assigned to N 

attributes in such a way that an arbitrarily chosen entry 
(scientist or journal or restaurant) ranks first, according to the 
weighted sum of the attribute values, among M (M >> N) 
commensurable entries. Only a fraction of all the entries in the 
Citation Database are MeFirst Eligible with respect to the 
entire collection. But in many subsets of entries, based, for 
example, on institutional affiliation, every scientist in the 
chosen group can claim top rank according to his or her 
weighting of the published attributes.   Even in much larger 
groups with thousands of candidates, most can claim first rank 
with a suitable set of weights.  

B. Other Types of Ranking 
Electoral voting systems also induce rankings, but they 

don’t use linear combinations of attributes. Major systems that 
may yield different winners include plurality, ranked-choice, 
approval, and positional voting like the Borda Count [1]. 
Questions about the outcome usually center on the eligibility of 
voters and on the validity of their votes [2]. Most political 
elections rank only a handful of candidates. A trifecta bet on a 
horserace attempts to rank the top three horses. The PageRank 
algorithm [3] conspicuously rank-orders billions of websites. 
The wide-ranging and often harmful effects of ranking human 
endeavor are critically examined in [4] and [5]. 

Our interest here is only the connection between ranking by 
weighted attributes and classification algorithms. More 
specifically, we will reduce MeFirst ranking to a set of binary 
classifications and propose solutions that differ from those 
commonly advocated for classical dichotomies. 

 

TABLE I.  ALGORITHMIC SOLUTION FOR THE WEIGHT MATRIX W. THE HIGHEST VALUE IN EACH COLUMN OF A×W IS ON ITS DIAGONAL  

9 1 1 0.23 -0.11 -0.11 1.85 -0.87 -0.87 1.34 -2.58 1.34 11.00
1 9 1 -0.11 0.23 -0.11 -0.87 1.85 -0.87 1.34 1.34 -2.58 11.00
1 1 9 -0.11 -0.11 0.23 -0.87 -0.87 1.85 -2.58 1.34 1.34 11.00
8 8 1 0.17 0.17 -0.32 0.85 0.85 -1.53 2.34 -1.09 -1.09 17.00
1 8 8 -0.32 0.17 0.17 -1.53 0.85 0.85 -1.09 2.34 -1.09 17.00
8 1 8 0.17 -0.32 0.17 0.85 -1.53 0.85 -1.09 -1.09 2.34 17.00
6 6 6 1.00 1.00 1.00 0.06 0.06 0.06 0.06 0.06 0.06 18.00

Weights WT Weighted sum of Attributes A x WAttributes A
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Some of our observations and experiments on real data 
were suggested by results on randomly generated attribute 
arrays with controlled properties. 

III.     CLASSIFICATION AND RANKING  
Standard text books on pattern recognition and machine 

learning start with an explanation of two-category and multi-
category classification. Most dichotomies discussed in the 
literature divide M patterns into two sets of the same order of 
magnitude, but imbalanced (skewed) classes arise in 
applications where samples of either class are rare.  Some texts 
also expand on single-category classification, which is the 
separation of signal from noise, or of normal samples from 
outliers [6]. The classification of attribute vectors ak into two 
classes can be accomplished with a single-layer network with 
weights w and a scalar threshold function.  

In N-dimensional space, a weight vector w is perpendicular 
to a hyperplane located at distance ||w|| from the origin. Adding 
a constant element (say 1) to the attribute vectors and a bias (or 
threshold) weight w0 raises the dimensionality of the attribute 
space to N+1 (this is dimensional augmentation, not data 
augmentation). In this space, a separating hyperplane passes 
through the origin, thereby giving rise to a unitomy [7, 8]. 
More arcane aspects of halfspace classification are discussed in 
[9, 10, 11, 12].  

A. Multi-category to Binary classification 
Kessler’s Construction replaces a C-category, N-attribute 

multi-category problem by a single dichotomy with (C-1) times 
as many C×N-dimensional attribute (or feature) vectors. Each 
new attribute vector contains one of the original attribute 
vectors, its negative, and zeroes everywhere else [13].   

Some classifiers, like Support Vector Machines, reduce 
multi-class problems to multiple one-against-all tasks. But in 
the SVM paradigm the number of dichotomies increases only 
with the number of classes rather than the number of patterns, 
which is typically orders of magnitude higher. Furthermore, 
linear separability is not necessarily the most appropriate 
categorization criterion for garden-variety classification tasks.   

B. Multiple Dichotomies via Pairwise Difference Vctors 
In contrast to the traditional dichotomy with many patterns 

on both sides, MeFirst ranking of M items requires solving M 
distinct dichotomies, each of which separates a selected item 
from all the others (the extreme case of skewed classification).  
MeFirst Eligibility of item k* requires that the value of the 
linear weighting function ak*wk* be higher than that of any 
other akwk , i.e.,  

ak*,1 wk*,1 + ak*,2 wk*,2…, ak*,N wk*,N  
>  ak,1 wk*,1 + ak,2 wk*,2, …, ak,N wk*,N ,  for all k ≠ k*,  or  

(ak*,1 - ak,1) wk*,1 + (ak*,2 - ak,2) wk*,2, …, (ak*,N - ak,N) wk*,N  >  0,  
      for all k ≠ k*  

Therefore MeFirst Eligibility is equivalent to one-against-all 
Halfspace Dichotomy of the attribute vectors, and to Unitomy 
of the pairwise difference vectors dk*,k = ak* - ak.  

One-against-all halfspace dichotomies lead to a new 
approach because in each dichotomy, we can classify the M-1 
pairwise difference vectors. This would be onerous for most 
two-class problems. If, for example, the patterns are partitioned 
into equal halves, there would be ~M2/4 difference vectors. 
Furthermore, finding weights that assign top-m ranking to m 
arbitrary entries is highly unlikely (cf. Section V). 

IV.     CONDITIONS FOR MEFIRST ELIGIBILITY  
We present some lemmas that lead to a theorem about how 

augmenting the dimensionality by adding a constant to each 
attribute and, optionally, normalizing the augmented vectors 
(typically to unit length), affect MeFirst Eligibility via single-
layer neural networks. 

Let ak = [ak,1, ak,2,…ak,N] be a row vector in array A.  
The row ak* is selected to be MeFirst Eligible, and  
w = [w1, w2, …, wN ]T is a weight vector.  

Lemma 1. (No preprocessing)  
ak* is MeFirst Eligible  
if w is a solution of ak w < 0 for Ɐ k ≠ k*  and  -ak* w < 0  

Proof:  ak* w > 0 > ak w ⇒ ak* w > ak w Ɐ k ≠ k*     QED 

Now let augmented vector a+
k = [1, ak,1, ak,2,…ak,N] and 

w+ = [w0, w1, w2, ….wN ]T . 

Lemma 2. (Augmentation)  
ak* is MeFirst Eligible  
iff  w+ is a solution of a+

k w+ < 0 for Ɐ k ≠ k* and -a+
k* w+ < 0  

Proof:  a+
k* w+ > 0 > a+

k w+ ⇔ ak* w + w0 > ak w + w0  
⇔ ak* w > ak w for Ɐ k ≠ k*        QED 

For normalization, let normalized vector ak
× = ak / ||ak||. 

Lemma 3. (Normalization)  
ak* is MeFirst Eligible  
if w is a solution of a×

k w < 0 for Ɐ k ≠ k* and - a×
k* w < 0  

Proof: : a×
k* w > 0 > a×

k w ,⇒ (ak* / ||ak*||) w > (ak / ||ak||) w 
 ⇒ (ak* w)/ ||ak*|| > (ak w) / ||ak||) 
Since ||ak*||) > 0 and ||ak|| > 0, ak* w > ak w Ɐ k ≠ k*      QED 

Lemma 4. (Normalization after augmentation)  
ak* is MeFirst Eligible  if w is a solution of a+

k w+ / ||a+
k||   < 0 

for Ɐ k ≠ k*, and -(a+
k* w+ / ||a+

k*|| ) w < 0. 

Proof: : (a+
k w+ / ||a+k|| ) w+ > 0 > a+

k w+ / ||a+k||   
⇒  a+

k* w+ > 0 > a+
k w+ ⇒ Lemma 2       QED 

Theorem  
Linear separability of a selected row of attributes from all other 
rows, determined either directly or via augmentation or 
normalization of the entire array, or by a combination of 
augmentation followed by normalization, guarantees its 
MeFirst Eligibility.  

N.B. Separation resulting from augmentation following 
normalization does not imply MeFirst Eligibility. 

Necessary Condition for MeFirst Eligibility (from Lemma 2): 
∃w such that a+

k* w > a+
k w   Ɐ k ≠ k*  

Sufficiency Conditions: the premisses of Lemmas 1-4. 
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Normalization by scaling every input vector to the same 
length is recommended by some researchers because it tends to 
accelerate neural network processing [14].  However, the 
normalized vectors are not linearly separable in the (admittedly 
rare) case of two original entries lying on the same ray from the 
origin (Fig. 2). Difference vectors, in contrast, can be freely 
normalized. In Fig. 3, the original difference vectors of point D 
(DA, DB, and DC) span more than π radians, but the difference 
vectors of the normalized attributes span less than π. In N-
dimensional space, any hyperplane bounding the halfspace 
containing these difference vectors induces a MeFirst ranking 
of the original attribute vectors.  

These figures also suggest that the difference vectors 
facilitate one-against-all classification because they span a 
larger solid angle than the row vectors. At the risk of derision, 
we invite comparison to the usefulness of derivatives in 
optimization problems. The chasm in the effect of 
normalization between attribute vector and difference-vector 
classification is one of the major points of this paper. It also 
suggests why LP algorithms dominate neural network solutions 
in this type of problem (cf. Section VIII). 

Our experimental results (below, in Table IV) confirm he 
above observations and provide examples of failures due to 
augmentation after normalization 

 
Fig. 2. A disadvantage of attribute length normalization. Attribute D is 

linearly separable from A, B, and C.  After normalization, evwery point 
lies on a circle of unit radius. D' is n’ longer separable from A’, B’ and 
C’ because it coincides with B’. (M=4, N=2) Such radially collinear 
vectors are rare in higher-dimensional attribute spaces. 

 

Fig. 3. A benefit of normalization. Attribute D is not linearly separable from 
A, B, and C. However, after normalization D’ is linearly separable from 
A, B, and C because vectors D’A’, D’B’, and D’C’ span less than π 
radians. The purple line suggest a possible seprating plane. (M=4, N=2). 

V.     LINEAR SEPARABILITY IN HIGH DIMENSIONS 
It can be shown that the separable fraction of dichotomies 

of M points in general positions in N-dimensional space 
diminishes rapidly as M exceeds 2N+1 (the capacity of a 
hyperplane) [15]. However, point sets generated from uniform 
multidimensional pseudo-random distributions yield far more 
one-against-all linearly-separable dichotomies. The Citation 
Database also yields more separable dichotomies than expected 
with M >> N > 3. Why? The answer may lie in the geometry of 
high-dimensional attribute space. 

The ratio of the volume of a shell of thickness ε to that of a 
unit hypersphere is 1-(1-ε)N. The exponential increase with N 
of the concentration of samples in a thin hyperspherical shell is 
well known. Bishop relates it to the curse of dimensionality 
[16] by pointing out that (1) When N>>1, the volume of a thin 
shell (ε<<1) approaches that of the whole sphere, and (2) Most 
of the probability mass of a high-dimensional Gaussian is 
located within a thin shell of specific radius [17]. So let us 
consider the linear separability of points in the thin shell.  

Every vertex on the convex hull of a collection of points is 
linearly separable from every other point. Therefore every 
point located on the surface of a hypersphere (the limiting case 
of a convex polyhedron) can be linearly separated from every 
other point on the surface by a hyperplane parallel to the 
tangent plane passing through that point (cf. Fig. 4).  

The attribute vectors that lie in a thin shell must be on (or 
near enough) the surface of a hypersphere. Therefore they form 
the vertices of a convex polyhedron and are linearly separable 
and MeFirst Eligible. This can account for the large proportion 
of MeFirst Eligible items in our data. Here high dimensionality 
is a blessing rather than a curse! Nevertheless, two points are 
linearly separable from the rest only if they share an edge of 
the convex hull. (In Fig. 4, there are four eligible pairs of 
points. The fraction of such pairs decreases rapidly with M.) 
Quantifying the argument to predict linear separability as a 
function of M and N will require accurate modeling of the 
underlying attribute distributions.  

 

Fig. 4. Convex hull (solid black lines) in thin (red) shell and separating 
plances (dashed lines) for the four attribure vectors in the shell. 

VI.     METHODOLOGY 
This section describes the two linear programming and 

three single-layer neural network algorithms that we ran on 
subsets of the Citation and University databases with various 
combinations of attribute vectors, pairwise difference vectors, 
normalization, dimensionality augmentation, and maximum 
number of iterations. After each run, the attribute matrix was 
multiplied by the new weight matrix, as suggested in Section 
II.  The max-diagonal property of the (M×M) product matrix 
was checked for independent verification of MeFirst eligibility.  

A. Linear Programming 
Finding the N weights of each of the M linear ranking 

functions can be stated as M independent linear programming 
problems. An LP procedure finds the minimum or maximum of 
a linear function subject to a set of linear constraints [18, 19]. 
For ranking, the constraints on the weight vector are imposed 
by the requirement that the weighted sum of the attributes of a 
selected item must exceed the sum (with the same weights) for 
any other item.  Weighted vectors that obey the constraints are 
called a feasible solution.  Since ranking is not really an 
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optimization problem, there is considerable flexibility in 
formulating the objective function.  The classical solution was 
the Simplex algorithm. Both the default Interior Point 
algorithm [20] built into MATLAB and into open-source GNU 
Octave, and the Dual Simplex algorithm [21], find a solution, if 
one exists, in polynomial (here approximately cubic) time. 

The LP program is run separately for every row k of the 
attribute matrix A to find the weight vector wk. Define Bk as an 
(M-1)×M selection matrix with 1’s in the kth column, -1’s at 
(1,1), (2,2), …, (k, k+1), (k+1, k+2), …..(M-1, M), and 0’s 
everywhere else. Then the M-1 inequality constraints for the kth 
weight vector wk are: Bk x A x wk > z where z is a column 
vector of M-1 zeros. This yields the (M-1) pairwise difference 
vectors. The objective function for the kth entry is the sum of its 
weights. If there is no feasible solution, the algorithm halts. 

B. Neural Networks 
Besides classification, neural networks are also often used 

to determine the linear separability of a set of point vectors.  
The original “fixed-increment perceptron error-correction” 
procedure [22, 23] for a unitomy (augmented, flipped and 
cyclically presented patterns x) was (with a slight abuse of 
notation): 
   wj+1 = wj + xjT if xj wj ≤. 0, and wj+1 = wj otherwise.   
This procedure provably converges to a solution if one exists. 
Subsequent speed-up efforts introduced corrections 
proportional to the magnitude of the error and to the fraction of 
misclassified patterns, a scale factor that decreases the size of 
the corrections with the number of iterations, randomized order 
of presentation, and batch correction. Note, however, that the 
bound on the number of iterations can only be computed from 
a known solution. After a given number of iterations, it is 
impossible to tell whether the weight vector is still approaching 
the solution cone or the input data is linearly inseparable. This 
holds also for the many other algorithms for training a single 
layer in the MATLAB Deep Learning toolbox [24]. Therefore 
the maximum number of epochs allowed must be specified. 

We compared the count of eligibles and the run time  of  
(a) Alpha Perceptron, modeled on the original elementary  
α-perceptron [25], (b) MeNet, a single-layer feed-forward 
network configured for gradient descent, (c) MATLAB 
LegacyPerceptron, and (d) LP. 

The normalization and augmentation experiments were 
conducted with the hand-coded Alpha Perceptron because the 
feed-forward net and the legacy perceptron from the Deep 
Learning toolbox have dozens of hidden functions and 
parameters, and some deliberately obfuscated p-files invisible 
to external MATLAB users. We set the initial weights to the 
average attribute vector and added a decreasing correction 
scale factor. We used this Alpha Perceptron to classify both 
attribute vectors and pairwise difference vectors, with and 
without dimension augmentation and input normalization.   

For MeNet, MATLAB’s FeedForwardNet was configured 
with zero initial weights, trainFcn trainlm (the Levenberg-
Marquardt algorithm, which is considered one of the fastest), 
transferFn transig (a soft activation function that requires 
rounding the outputs to 0 or 1 for classification), and mean-
square error criterion mse. The MATLAB Legacy Perceptron 

with hardlim (step transfer function) was too slow to test on 
our standard 500-row array of attributes. The best it could do in 
a nine-hour run was to confirm convergence on 11 of the first 
66 entries. All runs were timed on a 2.4GHz Dell Optiplex.  

VII.     EXPERIMENTS 
A. Data 

An article published in October 2020 in PLOS BIOLOGY 
lists publication and citation counts for over 100,000 scientists 
[26]. We call the updated version of this set of tables [27], 
from which subsets can be readily extracted according to name, 
institutional affiliation, or nationality, the Citation Database. 
PLOS (Public Library of Science) was launched in 2001. The 
PLOS journals are Open Source and charge a publication fee. 
Many blogs, house organs, and even news media, have already 
found judicious use for excerpts from the Citation Database. 
We also drew on a ranking of the 1000 “top” universities of the 
world according to published attributes [28]. 

The 12 attributes from the Citation Database that we used 
for fixed-N ranking are: 

1. year of first publication  
2. year of most recent publication  
3. total cites 1996-2019 
4. h-index as of end-2019 
5. hm-index as of end-2019 
6. number of single authored papers 
7. total cites to single authored papers 
8. number of single+first authored papers 
9. total cites to single+first authored papers 
10. number of single+first+last authored papers 
11. total cites to single+first+last authored papers  
12. number of distinct citing papers  

B. Results 
The fraction of MeFirst Eligibility decreases slowly with 

the number of entries and increases with the number of 
attributes. The first row of Table II shows that all 79 scientists 
associated with a small university can be ranked first. 
According to the last row, even with a hundredfold increase in 
the number of scientists, 50% remain eligible. Adding columns 
of publication counts modified only by excluding self-citations 
barely improves MeFirst Eligibility. Table III shows only a 1% 
increase from N=11 to N=15 (columns) for 500 rows.  

Tables IV and V report comparable results of runs on 500 
rows and 12 columns of the Citation Database, starting at 
randomly chosen Row #6280. Table IV confirms our lemmas. 
Augmentation (A) and Normalization (N), either separately  
(N-not-A and A-not-N), or together in that order (A-N), do not 
hamper determining Eligibility (and one-against-all linear 
separability) of row vectors.  Normalization followed by 
augmentation (N-A) tends to preclude it.  

The number of eligible weight vectors found by every 
algorithm increases monotonically with the maximum number 
of epochs. Comparing the results of Table V to those of Table 
IV shows that the perceptron algorithm converges significantly 
faster on pairwise difference vectors. But it still takes 
MaxEpochs=1,000,000 to converge on all 496 separable 
dichotomies. We verified that augmentation and normalization 
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does not prevent MeFirst Eligibility by computing A×W 
independently from the output weights of the networks. 

Table VI suggests that ranking universities is surprisingly 
similar to ranking scientists. Since the university data had only 
9 attributes, we compared it with the first 9 attributes of the 
Citation Database.  With 9 attributes, 405 entries of 500 from 
either source are Eligible.  For 1000 entries, eligibility differs 
only by 5%. The averages of 10 runs with integers from a 9-D 
pseudo-random uniform distribution are even higher. 

In the Citation Database, the scientists are already ranked 
by some criterion devised by its authors. Entries near the top 
have the most papers and citations. We extracted contiguous 
groups of 500 entries located in various parts of the array by 
selecting a different starting row for each group.  Table VII 
shows that the eligibility of groups of 500 scientists 
consistently favors scientists ranked nearer the bottom (higher 
1st row #) in the published list.   

Table VIII compares LP with NN. The largest comparison 
is based on 3000 dichotomies of 3000 12-D attribute vectors. 
For this task, LP on difference vectors is fastest. (The 
Karmarkar Interior Point and the Dual Simplex algorithms find 
the same number of eligibles and barely differ in runtime). The 
runner-up MeNet, trained with the Levenberg-Marquardt 
algorithm, is 5-10 times slower. With MaxEpochs=1000, 
MeNet still misses some solutions.  

TABLE II.  ELIGIBILITY  VS. NUMBER OF ENTRIES M  (ROWS) WITH  N=12  
 VIA LINEAR PROGRAMMING   

M Eligible % Time(s) 
79 79 100 1 

500 496 99 6 
1000 960 96 20 
3000 2254 75 222 
5000 3197 64 777 

10000 4984 50 5341 

TABLE III.  ELIGIBILITY VS. NUMBER OF ATTRIBUTES N, WITH  M=500  
VIA LINEAR PROGRAMMING 

N Eligible    % 
  9 405  81.0 
10 443  88.6 
11 495  99.0 
12 496  99.2 
13 497  99.4 
14 499  99.8 
15 500 100.0 

TABLE IV.  ELIGIBILITY VS. MAX EPOCHS  
WITH AND WITHOUT AUGMENTATION(A) AND NORMALIZATION (N) 

ALPHA PERCEPTRON ON ROWS WITH M=500  

A/N Epoch Eligible % Time(s) 
~A ~ N 1K 110 22 177 
N ~ A 1K 115 23 176 
A ~ N 1K 111 22 180 
N A 1K 3 1 86 
N A 10K 3 1 353 
A N 1K 113 23 179 
A N 10K 243 49 1359 
A N 100K 392 78 10611 

TABLE V.  ELIGIBILITY VS. MAX EPOCHS  
ALPHA PERCEPTRON ON ROW DIFFERENVCES WITH M=500 

A/N Epoch  Eligible % Time(s) 
~N 1K  264 53 117 
N 1K  315 63 101 
N 10K  409 82 613 
N 100K  485 97 2684 
N 1M  496 99 5590 

TABLE VI.  ELIGIBILITY VS. SOURCE OF ATTRIBUTES WITH, N=9 
VIA LINEAR PROGRAMMING 

M Eligible 
Universities Scientists  Random 

500 405 405 451 
10000 697 663 862 

TABLE VII.  ELIGIBILITY VS. PUBLISHED RANKING WITH, M=500 
VIA LINEAR PROGRAMMING 

1st row # Eligible % 
1 460 92.0 

1000 475 95.0 
6290 496 99.2 

10000 500 100.0 
100000 500 100.0 

TABLE VIII.  COMPARISON OF LP AND NN RUN TIMES WITH N=12 

Method M MaxEpochs Eligible Time(s) 
LP linprog 500 N/A 496 6 
LP linprog 1000 N/A 960 20 
LP linprog 3000 N/A 2254 222 
Alpha rows 500 100K 392 10611 
Alpha diffs 500 1M 496 5590 
MeNet 500 20 496 53 
MeNet 1000 100 954 115 
MeNet 3000 1000 2243 3013 
Legacy 500 500 11/66 43112 

VIII.     CONCLUSIONS  
We do not advocate any particular methods of ranking or 

classifying scientists and universities.  Our sole objective is to 
shed some light on an obscure and somewhat dusty corner of 
pattern recognition and machine learning. 

A thorough consideration of the relationships between 
MeFirst ranking, one-against-all halfplane dichotomies, 
pairwise attribute difference vectors, convex hulls and thin 
shells in feature space, linear programming, and single-layer 
neural networks, requires some shifting between algebraic, 
geometric, and probabilistic perspectives. Our findings can be 
summarized as follows.   

Top-ranking one of M entries with N attributes by a linear 
weighting function can be restated in terms of linear 
separability. The relationship between linear separability and 
linear weighted ranking is governed by necessary and 
sufficiency conditions on the attribute array. From a geometric 
perspective, any MeFirst eligible array vector must be located 
on a vertex of the convex hull of the remaining vectors. 
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A few attributes suffice to first-rank many entries. Every 
scientist in most groups of 500 from the Citation Database can 
be first-ranked with only 12 attributes. Even in a much larger 
group of 10,000 scientists with the same attributes, about half 
of the entries are eligible. After a steep initial climb, successful 
MeFirst ranking increases slowly with the number of attributes. 
We noticed but did not investigate the effects on MeFirst 
Eligibility of the statistical dependence among the attributes 
(e.g. between with and without self-citation attributes).  

The expected concentration of high-dimensional patterns in 
a thin shell can account for the high fraction of attribute vectors 
that can be ranked first by a suitable choice of weights. In 
principle, each of an infinite number of entries with distinct 
two-dimensional attributes on any convex curve could be 
ranked first. Top-m ranking is restricted to adjacent points.  

For one-against-all dichotomies, verifying the linear 
separability of pairwise difference vectors is faster than testing 
the attribute vectors directly. Difference vectors in general 
positions may be scale normalized without loss of MeFirst 
eligibility or linear separability. Difference vectors are 
effective only for highly skewed classifications. 

Our experiments suggest that for one-against-many 
dichotomies, Linear Programming algorithms are much faster 
than training single-layer (“perceptron”) neural networks.   

A possible topic for future research is classification based 
on difference vectors for dichotomies with highly unbalanced 
class memberships, e.g. novelty detection and one-shot 
learning. 
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