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One-Against-All Halfplane Dichotomies

George Nagy(B) and Mukkai Krishnamoorthy

Rensselaer Polytechnic Institute, Troy, N.Y. 12180, USA
nagy@ecse.rpi.edu, moorthy@cs.rpi.edu

Abstract. Given M vectors in N-dimensional attribute space, it is much easier to
find M hyperplanes that separate each of the vectors from all the others than to
solveMarbitrary linear dichotomieswith approximately equal classmemberships.
An explanation of the rapid growth with M and N of the number of separable one-
against-all linear halfplane dichotomies is proposed in terms of convex polyhedra
in a hyperspherical shell. The counterintuitive surge is illustrated by averaged
results on pseudo-random integer arrays obtained by Linear Programming and
Neural Networks. Although the initial motivation arose from seemingly arbitrary
rankings of scientists and universities, this project is not directed at any application.
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1 Introduction

We consider datasets ofM homogenous patterns, i.e., sets of observations on objects that
do not naturally fall into two or more categories. Each pattern is, as usual, represented
by a feature vector of N elements. Examples of such datasets include census records,
fact sheets for countries, cities, schools, universities or hospitals, and collections of
publication data for scientists. In the small collections we have in mind, M may range
from 10 to 106, and N from 1 to 100.

Our objectives are to explore, theoretically and experimentally, (1) why so many
of the M patterns can be linearly separated from all the others when M >> N > 3;
(2) equivalently, why most patterns can be ranked first among all the patterns by a linear
weighting function; (3) whether feature difference vectors facilitate finding the weight
vectors for such one-against-all dichotomies; and (4) how the required weight vectors
can be obtained with either linear programming or a perceptron-type neural network.
We introduced some of these issues in an ICPR 2022 submission [1].

There are, of course, other ways to analyze pattern matrices beside linear separation
or ranking, including descriptive statistics, higher moments of the empirical distribu-
tions, and classification with various degrees and types of supervision. Data may be
analyzed to reveal groups or clusters that are more like each other in some respect than
like other groups. The expectation in such exercises is that each class is grouped some-
what compactly in feature space, with every class bounded by non-intersecting linear
or nonlinear surfaces. We are, however, interested only in how many patterns in a given
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set can be linearly separated from all the others. We believe that the answer is counter-
intuitive because of the difference of volume-surface relations in hyperspace from our
experience in the 3-D world.

In the remainder of this paper, we present a brief literature review (Sect. 2); exam-
ine the prevalence of one-against-all halfplane dichotomies in pseudo-random arrays
(Sect. 3); relate the number of such dichotomies to surface-to-volume ratios in hyper-
space (Sect. 4), comment on the merits of difference vectors (Sect. 5), compare Linear
Programming and Neural Network solutions (Sect. 6); return briefly to MeFirst ranking
(Sect. 7); and summarize our putative contributions (Sect. 8).

2 Prior Work

Most of this work is based on theory established at least 50 years ago. Our terminology
and notation mirrors those of venerable textbooks on pattern recognition like DHS,
Fukunaga, K&K, and Bishop [2–5]. These include material about weight vectors and
separating planes in hyperspace, feature normalization and column augmentation, and
some aspects of dynamic and linear programming and of single-layer neural networks
for which we feel compelled to cite primary sources.

One-class classification (OCC), typically encountered in anomaly detection or sepa-
ration of signal from noise, is really a two-class discriminations where one class (normal,
signal, inlier) is well defined by one or more clusters of samples, and the other class
(abnormal, anomalous, noise, outlier), usually with far fewer samples, does not exhibit
any compactness characteristic in feature space [3]. Any pattern far enough from the
normal class (according to some metric) falls into this abnormal class. One-shot learn-
ing is different: here it is desired to improve the classifier after seeing each new labeled
sample [6].

Multi-category classification can be reduced to either a large binary discrimination
(via Kessler’s Construction [7]), or to a set of dichotomies with the same number of
features, as is customary for Support Vector Machines. We mention these paradigms
because they are easy to confuse with our main subject of one-against-all dichotomies.

The ease of one-against-all linear separationmay be contrastedwithHughes’ demon-
stration that the fraction of linearly separable pairs of sample sets (i.e., halfplane
dichotomies) ofM points in general positions in N-dimensional space diminishes rapidly
as M exceeds 2N + 1 (the capacity of a hyperplane) [8].

Hilbert’s and Coxeter’s illustrations of 4-dimensional polyhedra offer a gentle intro-
duction to hyperspace [9, 10]. Formulas for the volume and surface area of an n-sphere
are listed in [11]. Bishop provides a good explanation of why with rising dimensionality
samples are increasingly concentrated in a thin shell [5]. Kernel methods map nonlinear
boundaries into hyperplanes in higher dimensions [12].

Although Linear Programming (LP) is designed to optimize a linear function sub-
ject to a set of linear constraints [13, 14], we used it only to obtain weights for linear
separation. Both the default Interior Point algorithm [15] built into MATLAB and into
open-source GNU Octave, and the Dual Simplex algorithm [16], find a solution, if one
exists, in polynomial time, and halt if the constraints cannot be satisfied.

Neural networks (NNs) have also been used to determine linear separability. The
original “fixed-increment perceptron error-correction” procedure provably converges to
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a solution if one exists [17, 18]. Replacing the Heaviside step activation by a differen-
tiable function led to gradient descent methods that accelerate convergence. However,
the bound on the number of iterations can still be computed only from a known solution.
It is impossible to tell whether the weight vector is still approaching the solution cone
or the input data is linearly inseparable. This holds also for other algorithms for training
a single layer. Therefore the maximum allowed number of epochs or training cycles
must be specified. Unlike LP, a single-layer neural network can never confirm linear
inseparability. We programmed an elementary α-perceptron according to the 1966 per-
ceptron software manual [19], and ran a single-layer feed-forward network configured
for gradient descent from the MATLAB Deep Learning toolbox [20].

The wide-ranging and often harmful effects of ranking human endeavor are critically
examined in [21] and [22]. OpenAI forbids such use of its software [23].

3 One-Against-All Halfplane Dichotomies

We confine our attention to classifying each pattern in the dataset against every other
pattern. For M patterns, we “train” M classifiers to perform M binary classifications.
Each classifier is trained on all M patterns, but with a different pattern singled out for
the positive class. Since each of the M classifiers knows the identity of the distinguished
pattern, it could achieve 100% correct performance via table look-up. However, we seek
only to isolate each pattern by a linear weighting of its features.

Since we don’t have any test set (which dispenses us from the vexatious concern for
generalization), how do we measure performance? Our performance metric for the M
classifiers is the fraction of linearly separable dichotomies. Suppose, for example, that
M = 200. If an algorithms finds 180 weight vectors such that each separates one pattern
from the remaining 199, then the metric is 0.9.

Let us look at a two-dimensional example where we can plot both the patterns and
the weight vectors. If one had to find seven one-against all linearly separable vectors
in two-space, they would have to lie on the vertices of a convex polygon, like the four
different sets of 7 points in Fig. 1. (Only one of the polygons – for the + set – is traced
explicitly in the Figure.) Any points inside the polygon would not be separable from all
the other points. Each point set gives rise to 7 linear dichotomies. Only the line separating
one of the+’s from the other six is shown. Note that most of the points fall in an annulus
(or shell in higher N). The next section suggests that the prevalence of one-against all
linear separability is due to the increasing concentration of points in the shell.

For a fixed N, the number Fsep(M, N) of one-against-all halfplane dichotomies is a
rising function of the number of patterns M that flattens out when M is large enough.
We denote its asymptotic vale as M^. The function depends critically on the number of
attributes N (i.e., the dimensionality of the feature space). The values of the function
change by orders of magnitude, but its general behavior remains the same.

We believe that our experimental exploration of the parameter space for N up
to 12 and M up to 10,000 reveals most of the interesting behavior of this func-
tion. We conducted our experiments on M × N arrays of pseudo-random integers
(randi(R, M, N)) with R = 1000. (To keep coincidences low enough to avoid affecting
the overall behavior, the range R must satisfy RN >>M.) Depending on the variability
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Fig. 1. Four sets of one-against-all linearly separable points at the vertices of convex polygons.
One of the polygons is shown with dashed lines, The solid black line separates one of the +s from
the other six +s These four (◯, +, *, ×) were the only separable sets of 7 points generated by
200 pseudo-random trials with a 1–10 range of integers. The dotted circles bound an annulus that
contains most of the points.

of the observations, we ran each setting with 10 or 100 trials and recorded the average
Fsep and its standard deviation. For exploring the behavior of Fsep for larger values
of M, we sampled only every 5th, 10th, 100th or 1000th M, as shown in the figures.
Even so, several of the experiments ran for over ten hours on our vintage 2.4 GHz Dell
Optiplex. The run-time is roughly proportional to T × M3, where T is the number of
trials. In Sect. 6, we tabulate some results, including timing, on small and large attribute
arrays.

Initially, Fsep(M, N)=M for any N, because in N-space, any N+ 1 points in general
positions are linearly separable. In 3-D, these points form the vertices of a tetrahedron,
but in higher dimensions they are difficult to visualize. The linear growth of Fsep with
M extends rapidly with N. With N = 2, the increase moderates as soon as M = 5 and
the curve is almost flat by M = 100 (Fig. 2). With N = 5, the slope is still about 0.75
at M = 100 (Fig. 3). But with N = 12, the fraction of linearly separable dichotomies is
90% even at M = 6400 (Fig. 4). We lack the computer resources to explore it further.
For a fixed M as a function of N, Fsep necessarily plateaus at Fsep(M, N) = M after a
linear rise (Fig. 5).

4 A Geometric Perspective

Although an infinite number of distinct points located on the surface of anN-dimensional
sphere are one-against-all separable, their number reaches a limiting value in any realistic
scenario where the points are subject to perturbation. Both this asymptotic magnitude
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Fig. 2. Fsep, the number of separable patterns, vs. M, with N = 2
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Fig. 3. Fsep, the number of separable patterns, vs. M, with N = 5
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Fig. 4. Fsep, the number of separable patterns, vs. M, with N = 12
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Fig. 5. Increase in the number of one-against-all separable dichotomies (FSep) with N
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M^ and the value of M where it prevails increase rapidly with N. A possible cause is the
following. The ratio of the volume of a shell of thickness ε to that of a unit hypersphere
is 1-(1-ε)N. If, for example, N = 5 and ε = 0.2 (a shell of thickness equal to 20% of
the radius), then the volume of the shell is 67% of the volume of the sphere. Therefore
most of the randomly generated points would fall in the shell, as already suggested by
Fig. 1 (where N is only 2). They are all separable only if they constitute the vertices of
a convex polyhedron.

For an additional point to be separable from the rest without altering the convexity
of any existing vertex, it would have to fall near the center of one of the faces of the
polyhedron, as suggested by the 2-D example in Fig. 6. Since every new separable point
decreases the area of the facets, the space available for new separable pints approaches
zero at a rate decreasing with M. For any M, with large-enough N it is possible to
generate sets of M points in general positions that are one-against-all linearly separable.
We believe that these notions generalize toNdimensions and look forward to suggestions
from the Workshop participants on turning arguments into a proofs.

Fig. 6. How near is near enough? Suppose that there are already 4 point located on a circle
(hypersphere). Where in the red sector can we add a new point? The space available for a new
point shrinks as the points in the shell get closer to each other. Space available for new separable
points in the red sector of the convex hull is shown in blue. (Color figure online)

5 Pairwise Attribute Difference Vectors

Wemust at this point introduce some notation. Our data vector is theM×N array A. Let
ak, k = 1 to M, be the row vectors of A. Let wk be the M column vectors of the N × M
weight matrixW. The task is to findMweight vectorswk such that ak * wk > ak * wk for
all for all k �= k*. In other words, we must solve M one-against all dichotomies.

Stated in terms of pairwise difference vectors dk*,k = ak* - ak, dk*,k> 0
for all k �= k*. The difference vectors define homogenous halfspace dichotomies as
illustrated in Fig. 7. The constraints for a linear programming solution are naturally
framed in terms of difference vectors. Our experiments indicate that difference vectors
also lead to faster convergence of single-layer neural networks. A possible reason is that
in the direct solution, the distinguished vector ak* can change the weight vector only
once per epoch. In the proposed alternative, every vector plays an equal role in training.
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Fig. 7. Normalized pairwise difference vectors (+) for 8 one-against-all separable attribute vectors
(o) form a homogenous halfplane dichotomy, bounded by the dashed line. For better visibility, the
unit-length difference vectors were scaled (multiplied) by 100.

6 Linear Programming and Neural Networks

Tofind theweights of the separating vector, we used the difference vectors as the required
constraints and minimized the sum of the weights as the objective function. We found
equivalent, but not identical, solutionswith theMATLABdefault Interior Point algorithm
and the Dual Simplex algorithm. The LP programwas run for each of theM one-against-
all dichotomies of the pseudo-random M × N integer arrays folded into a loop for the
specified number of trials (10 or 100).

Because the networks in the MATLAB Deep Learning toolbox have so many invis-
ible built-in functions (including their Legacy Perceptron), we programmed a classical
α-perceptron in m-code. As shown below, it required far fewer iterations with the input
preprocessed into pairwise difference vectors than directly on the rows of the attribute
array. We report only the fastest configuration of the Alpha Perceptron, with dimension-
ality augmentation after normalization. As proved in [1], the weights obtained with such
preprocessing also separate the original array.

We also experimented with a single layer Levenberg–Marquardt feedforward net-
work. Since the feedforward net has a smooth (hyperbolic tangent sigmoid) activation
function, we rounded its output to 0 or 1. We set the performance criterion to least mean
squares. After missing a few dichotomies with MaxEpochs = 10, this net reached the
correct value of Fsep = 496 on the 500 × 12 arrays.

The general trend of the performance comparisons are shown in Table 1. In every
experiment, we checked the output weights directly on the original array. The runtimes
reported were obtained with tic-toc, which is not immune toWindows background activ-
ity.Our objectives for the experimentswere only to show that one-against-all dichotomies
are easier for both LP and NN than arbitrary divisions of M patterns into approximately
equal classes, and that such dichotomies benefit from pairwise difference input.
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Table 1. Performance of LP and NN on 8 × 2 and 500 × 12 pseudo-random attribute arrays.

Method M N MaxEpochs Trials Fsep Time (s)

LP 8 2 N/A 100 5.5 7

Alpha Perceptron (diffs) 8 2 100 100 5.5 0.3

Alpha Perceptron (rows) 8 2 100,000 100 .4.9 239

Levenberg–Marquardt 8 2 10 100 5.4 7

LP 500 12 N/A 10 496 63

Alpha Perceptron (diffs) 500 12 100 10 496 9

Levenberg–Marquardt 500 12 10 10 496 564

7 Ranking

What originally led us to one-against-all dichotomies was MeFirst Ranking. A ranking
of 100,000 scientists with their citation attributes was published in October 2020 in
PLoS BIOLOGY [24, 25]. We wanted to demonstrate the existence of linear weighting
functions that would allow most of these scientists to claim first rank in a large subgroup
(defined, for example, by institution or nationality). In [1], we explored that dataset, and
another of the 1000 “top” universities [26]. Rather than repeating those results here, we
observe only that while the relationship of the number of separable entries to M and N,
Fsep(M, N), was much the same as what we found on pseudo-random integer arrays,
separating the real data took more work. Although for M = 500 and N = 12 both sets
yield Fsep = 496, it takes the Alpha Perceptron 1,000,000 instead of 100 epochs to
complete the task. The LP, however, shows no increase in runtime.

Table 2 is a small example with small integer coefficients that shows clearly the
equivalence of linear separability and ranking. It also illustrates the method we used in
all our experiments to verify the weights of the separating vector. We note that if ties
for first place area not considered admissible, an additional check is required. With the
range of integer arrays used in our simulations (1000), coincidences among the 10002

(N = 2) or 100012 (for N = 12) possible entries are rare.
Because attribute vector normalization (usually to unity) and column augmenta-

tion (via the addition of a constant attribute and a threshold weight) are often used
in statistical and neural network classification, in [1] we gave sufficient and necessary
conditions for MeFirst ranking and one-against-all separability in terms of normalized
or augmented attribute vectors. We close with an informal statement of sufficient and
necessary conditions in geometric terms.

Proposition: Each of a set of M points in N-space are one-against-all separable
from the remaining M-1 points if and only if each point constitutes a distinct convex
vertex of the convex hull of all M points.

Note that points on the edges or faces, which are by convention considered part of
the convex hull, are excluded, as are coincident points.
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Table 2. The highest value of each weighted attribute vector is on the diagonal of the product
matrix. For example, the product of (1, 8, 8)× (0, 1, 1) is the highest value (16) in the fifth column.

Attributes A Weights WT Weighted sum of Attributes A × W

9 1 1 1 0 0 9 1 1 10 2 10 11

1 9 1 0 1 0 1 9 1 10 10 2 11

1 1 9 0 0 1 1 1 9 2 10 10 11

8 8 1 1 1 0 8 8 1 16 9 9 17

1 8 8 0 1 1 1 8 8 9 16 9 17

8 1 8 1 0 1 8 1 8 9 9 16 17

6 6 6 1 1 1 6 6 6 12 12 12 18

8 Summary

This paper presents a problem that we believe has received little attention. We investi-
gated the behavior of one-against-all halfplane dichotomies of pseudo-random integer
arrays and found that it is very different from that of similar dichotomies with approx-
imately balanced populations. We showed that for a limited range of M patterns in
N-dimensional feature space, linear separability can be determined with either Linear
Programming or single-layer Neural Networks. In contrast to balanced populations, the
preferred input for both methods is an array of pairwise attribute difference vectors.

We found that one-against-all linear separability in any dimensionality N increases
rapidly with M, with the slope changing gradually from unity to zero. With fixed M,
the number of linearly separable halfplane dichotomies increases monotonically with N
from N + 1 to its maximum of M.

We suggested that this surprising behavior is due to the concentration of high-
dimensional patterns in a hyperspherical shell where they form the vertices of a convex
polyhedron. Convex vertices are linearly separable from all other points regardless of
whether these are on the surface or inside the entire point set.
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