
17/07//01 TNT
W. A. Pearlman

Wavelet and Zerotree Coding

©William A. Pearlman

Center for Next Generation Video

Rensselaer Polytechnic Institute

Troy, NY, USA

pearlman@rpi.edu

http://www.cipr.rpi.edu/staff/pearlman.html

17/07//01 TNT
W. A. Pearlman

Outline

• Wavelet transforms
• Ordered bit plane transmission
• Zerotree coding principles

– Said and Pearlman, ISCAS ’93, pp. 279-282
– Shapiro, IEEE Trans. SP, Dec. 1993

• SPIHT coding
– Said and Pearlman, IEEE Trans. CSVT, pp.

243-250, June 1996

• Image Reconstructions

17/07//01 TNT
W. A. Pearlman

Wavelet Filtering

ω
π0.5π

LP HP

HP

LP

2

2

17/07//01 TNT
W. A. Pearlman

Recursive Low Pass Filtering

Hi

Lo

Hi

Lo

Hi

Lo
Hi

Lo

H

LH

LLH

LLLH

LLLL

11/21/41/81/160
ω/πHLHLLH

LLLHLLLL

17/07//01 TNT
W. A. Pearlman

Synthesis Recursive Filtering

Hi

Lo

Hi

Lo

Hi

Lo
Hi

Lo

H

LH

LLH

LLLH

LLLL

11/21/41/81/160
ω/πHLHLLH

LLLHLLLL

Hi 2HPF2LPF Lo

17/07//01 TNT
W. A. Pearlman

2D Transform

Transform rows in place

Transform columns in place

LP HP

LL HL

LH HH

17/07//01 TNT
W. A. Pearlman

Recursive Hi/Lo 2-Stage Filtering

Hi Hor

Lo Hor

Lo Vert

Hi Vert

Hi Vert

Lo Vert
Hi Hor

Lo Hor
Hi Vert

Lo Vert

Hi Vert

Lo Vert

Add 3rd pair for 3 dimensions,
4 -> 8 subbands per stage

17/07//01 TNT
W. A. Pearlman

Multi-resolution (Wavelet) Transform

0 1

11
2

22
3

33

0

0

π

π
ωΗ

ωV

0 -> 1/8 res.
+
1,1,1 -> 1/4 res.
+
2,2,2 -> 1/2 res.
+
3,3,3 -> full res.

© Copyright 1999 by Amir Said, All rights reserved

1st stage

© Copyright 1999 by Amir Said, All rights reserved

2nd stage

© Copyright 1999 by Amir Said, All rights reserved

5th stage

© Copyright 1999 by Amir Said, All rights reserved

Haar Transform

• Definition for one-dimensional array

• Recursive computation




 −=


 +=
+

+

+

+
pphppp

k

i

k

i

k

i

k

i

k

i

k

i 122

1

122

1

2

2
,

2

2

hhhhhhhp
hhhhhhpp
hhhhpppp
pppppppp

1

3

1

2

1

1

1

0

2

1

2

0

3

0

3

0

1

3

1

2

1

1

1

0

2

1

2

0

2

1

2

0

1

3

1

2

1

1

1

0

1

3

1

2

1

1

1

0

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

© Copyright 1999 by Amir Said, All rights reserved

Overlapping Kernels

• One formula for overlapping multiresolution transform

• Inverse transform




 −+−=




 −+++−=

++

+

++−−

+

ppph

pppppp
k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

22122

1

221221222

1

242
8

2

262
8

2




 −+++−=




 −+−=

+

+

+

+

+++

−+

+++

−

hphphp

hphp

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

1

1

1

1

111

112

111

12

262
8

2

242
8

2

 4

Integer Wavelet Transform Filters :

I(13, 7):
 Low = (-1, 0, 18, -16, -63, 144, 348, 144, -63, -16, 18, 0, -1)/2^9
 High= (1, 0, -9, 16, -9, 0, 1)/2^4

I(9, 7):
 Low = (1, 0, -8, 16, 46, 16, -8, 0, 1)/2^6
 High= (1, 0, -9, 16, -9, 0, 1)/2^4

I(9, 3):
 Low = (3, -6, -16, 38, 90, 38, -16, -6, 3)/2^7
 High= (-1, 2, -1)/2

I(5, 3):
 Low = (-1, 2, 6, 2, -1)/2^3
 High= (-1, 2, -1)/2

I(13, 11):
 Low = (-3, 0, 22, 0, -125, 256, 724, 256, -125, 0, 22, 0, -3)/2^10
 High= (-3, 0, 25, 0, -150, 256, -150, 0, 25, 0, -3)/2^8

I(5, 11):
 Low = (-1, 2, 6, 2, -1)/2^3
 High= (-1, 2, 7, 0, -70, 124, -70, 0, 7, 2, -1)/2^7

I(2, 6):
 Low = (1, 1)/2
 High= (1, 1, -8, 8, -1, -1)/2^3

I(2, 10):
 Low = (1, 1)/2
 High= (-3, -3, 22, 22, -128, 128, -22, -22, 3, 3)/2^7

I(2, 2):
 Low = (1, 1)/2
 High= (-1, 1)

© Copyright 1999 by Amir Said, All rights reserved

The “Lifting” Technique

1
3

2
1

1
2

3
0

1
1

2
0

1
0

3
0

1
3

2
1

1
2

2
1

1
1

2
0

1
0

2
0

1
3

2
1

1
2

1
2

1
1

2
0

1
0

1
0

1
3

1
3

1
2

1
2

1
1

1
1

1
0

1
0

1
3

0
6

1
2

0
4

1
0

0
2

1
0

0
0

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

hhhhhhhp

hhhphhhp

hhhphhhp

hphphphp

hphphphp

pppppppp
add neighbors, divide by 2, subtract

add neighbors, divide by 4, add

add neighbors, divide by 2, subtract

add neighbors, divide by 4, add

use bit reversal to reorder

1/4

-1/2
1

1/4

-1/2

1

-1/2 -1/2
1

1
1/4 1/4

 5

Lifting Scheme 1

DWT

Inverse DWT

2

2

p

 -

 +

u

LP

HP

z-1

u p

-

+

2

2

+

LP

HP

z

 6

Filter Coefficients:

I(2, 2):
 p = 1,
 u = 1/2
I(5, 3):
 p = (1, 1)/2,
 u = (1, 1)/4

I(9, 7):
 p = (-1, 9, 9, -1)/16,
 u = (1, 1)/4

I(9, 3):
 p = (1, 1)/2,
 u = (-3, 19, 19, -3)/64

I(13, 11):
 p = (3, -25, 75, 75, -25, 3)/256,
 u = (1, 1)/4

I(13, 7):
 p = (-1, 9, 9, -1)/16,
 u = (-1, 9, 9, -1)/32

© Copyright 1999 by Amir Said, All rights reserved

Bit-plane Coding

• Progressive coding of wavelet coefficients

sign bit

magnitude bits
msb

lsb

Multiresolution
Pyramid

original
image

rows
transformed

columns
transformed

pyramid
structure

L H
LL
L

HL

LH HH

n Original image: pi,j where (i,j) is the pixel
coordinate

n Unitary image transformation: c = Ω (p)

n Distortion measure: mean squared-error (MSE)

Dmse N Dmse($) $ ($)p p p p c c− = − = −1 2

Progressive Image
Transmission

n Basic scheme & objective

1. Decoder sets reconstruction

2. After updating reconstruction with the

first bits we want to have

the smallest achievable distortion

n Ranking: most important data go first

n Simple scheme for MSE distortion

1. elements of c with largest magnitude

first

2. most significant bits of the magnitude

first

$c 0=

()$ $p c= −Ω 1

Bit-Plane
Transmission

n Transmission the magnitude-
sorted coefficients

n Quantization performance
• ready for embedded coding

• ordering makes uniform & memoryless
quantization very effective

• efficient coding of the ordering data is
needed

sign s s s s s s s s s s s s s
msb 5 1 1 0 0 0 0 0 0 0 0 0 0 0

4 →→ →→ 1 1 0 0 0 0 0 0 0 0 0
3 →→ →→ →→ →→ 1 1 1 1 0 0 0 0 0
2 →→ →→ →→ →→ →→ →→ →→ →→ 1 1 1 1 1
1 →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→

lsb 0 →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→

Algorithm I

1. Output

2. Sorting pass: output vn, followed by the pixel
coordinates and signs of all vn coefficients such
that 2n ≤ |ci,j| < 2n+1

3. Refinement pass: output the n-th most
significant bits of all coefficients with |ci,j| ≥ 2n+1

(i.e., those that had their coordinates
transmitted in previous sorting passes), in the
same order used to send the coordinates.

4. Decrement n by 1 and go to step 2.

{ }() n ci j i j= log max , ,2

Coding the
Ordering Data

n Sorting Objective:
progressive selection of the coefficients such
that

|ci,j| ≥ 2n, n = n0, n0 - 1, n0 - 2, ...

n Implicit Transmission
• encoder and decoder use the same sorting

algorithm

• the decoder receives all comparison results
(branching) and duplicates the encoder´s
execution path

• ordering is recovered from execution path

17/07//01 TNT
W. A. Pearlman

Tree Structure
3 level dyadic subband transform shown
Arrows depict parent-child relationships in the tree structure
Coefficients are grouped to exploit magnitude dependence
Each subband coefficient has four children (except leaves)

Each coefficient is denoted by
it coordinates (i,j)

Set Types
(i,j): Single coefficient
O(i,j): Children of (i,j)
D(i,j): Descendants of (i,j)
T(i,j): {(i,j)} U D(i,j)
H : indices of all tree roots

17/07//01 TNT
W. A. Pearlman

Partitioning Rules

1. Initial partition T(i,j) for all (i,j) in H.
2. If T(i,j) significant, it is partitioned into

sets (i,j) and D(i,j)
3. If D(i,j) is significant, it is partitioned into

sets T(k,l), for all (k,l) in O(i,j).

• Map (i,j) to n = 0,1,2, ..., N-1 (notational
convenience)

17/07//01 TNT
W. A. Pearlman

Ordered Lists

• Dominant List:
– Node index n,

– State of node n relative to threshold T, S(n,T)
• State used to convey significance of node {n} and

D(n) and conveys ordering information

• Subordinate list
– Contains refinement bits of significant

coefficients

17/07//01 TNT
W. A. Pearlman

Significance States

()




∞

≠
= ∈

otherwise.,

)(,max
)()(φ

ϕ
nDc

n nnDm

Given a threshold T >0, the state S(n,T) may have four
different values:

IT (Insignificant Tree) : |cn| < T, < T
IR (Insignificant Root): |cn| < T, > T
SR (Significant Root) : |cn| > T, < T
ST (Significant Tree) : |cn| > T, > T

Operate through significance decisions for trees of wavelet
transform coefficients. Define significance function

)(nϕ
)(nϕ
)(nϕ
)(nϕ

17/07//01 TNT
W. A. Pearlman

State Transitions

IT IR

STSR

1 bit for transitions from IR and SR, 2 bits from IT

17/07//01 TNT
W. A. Pearlman

EZW States

EZW States Description IEZW States

ZTR zerotree root IT
ISZ isolated zero IR
POS significant, positive root
NEG significant, negative root

States, not state transitions, coded in EZW
--2 bits per state

17/07//01 TNT
W. A. Pearlman

Algorithm II (IEZW)

1. Define initial threshold: set

T = , and output k0 to the decoder

2. Initialize index lists: the subordinate list is
set as empty; dominant list contains n in H

3. Dominant Pass: for each entry n in the
dominant list do:

 |)|(maxlog 20 nn ck =
02 k

17/07//01 TNT
W. A. Pearlman

Algorithm II, Step 3.

a) save old state Sold= S(n,2T) and find the new state
Snew = S(n,T) ;

b) Output the code of the state transition Sold-> Snew;

c) if Sold SR and Snew IR, then add index n to the
subordinate list and output sign of ;

d) If Sold IR and Snew SR, add indices of O(n) to
the end of the dominant list;

e) If Snew= ST, remove index n from dominant list;

≠ ≠

nc
≠ ≠

17/07//01 TNT
W. A. Pearlman

Algorithm II (cont.)

4. Subordinate Pass: for each entry n in the
subordinate list output the k-th most
significant bit of |cn|;

5. Threshold update: decrement k, set T =
T/2, and go to Step 3.

Note ordering information implicitly
recovered in Step 3.c

17/07//01 TNT
W. A. Pearlman

SPIHT Tree Structure
3 level dyadic subband transform shown
Arrows depict parent-child relationships in the SPIHT tree structure
Coefficients are grouped to exploit magnitude dependence
Each subband coefficient has four children
Some coefficients in the DC subband have no children

Each coefficient is denoted by
it coordinates (i,j)

Set Types
(i,j): Single coefficient
C(i,j): Children of (i,j)
D(i,j): Descendants of (i,j)
L(i,j): D(i,j) - C(i,j)

Significant sets D(i,j)
partitioned C(i,j)
and L(i,j)

17/07//01 TNT
W. A. Pearlman

Coding Sequence

• SPIHT uses three lists LIP, LIS, LSP visited for
significance testing in that order, for a given bit-plane (n).

– LIP: list of coordinates of insignificant pixels
• Initialized by highest level low-pass (DC) subband

– LIS: list of coordinates of insignificant sets and their
type (D or L)

• Initialized by coordinates in DC subband with descendants as
D type

– LSP: list of coordinates of significant pixels
• Send n-th bit of all pixels found to be significant in previous

passes.

17/07//01 TNT
W. A. Pearlman

SPIHT Algorithm

Type A or B?

max in D(i,j)

≥ 2 n

(k,l) in O(i,j) L(i,j)

L(i,j)=
 ?φ

Remove (i,j)
from LIS

max in L(i,j)

≥ 2 n

≥ 2 n
|c(k,l)|

≥ 2 n

|c(i,j)|

LIS (2)LIP (1)LSP (3)

(i,j)

A
Output 1 or 0

Output 1 or 0

Output 1 or 0

Output 1 or 0

N

N

Y
/

(i,j)

(k,l)

Y

Y Y

Y

N

N

N

B

(i,j)

(k,l) in O(i,j) to end
of LIS as Type A;

Remove (i,j) from LIS
(k,l) (k,l)

Output sign,
move (i,j) to

LSP

(k,l) to end
 of LIP

Output sign,
move (k,l) to

LSP

17/07//01 TNT
W. A. Pearlman

17/07//01 TNT
W. A. Pearlman

LSP Sorting by Magnitude
and Progressive Bit-Plane Transmission

Transmission of magnitude-sorted coefficients

sign s s s s s s s s s s s s s
msb 5 1 1 0 0 0 0 0 0 0 0 0 0 0

4 →→ →→ 1 1 0 0 0 0 0 0 0 0 0
3 →→ →→ →→ →→ 1 1 1 1 0 0 0 0 0
2 →→ →→ →→ →→ →→ →→ →→ →→ 1 1 1 1 1
1 →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→

lsb 0 →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→ →→

Send n-th bit of all coefficients found to be significant in
previous passes.

17/07//01 TNT
W. A. Pearlman

63 -34 49 10 7 13 -12 7
-31 23 14 -13 3 4 6 -1
15 14 3 -12 5 -7 3 9
-9 -7 14 8 4 -2 3 2
-5 9 -1 47 4 6 -2 2
3 0 -3 2 3 -2 0 4
2 -3 6 -4 3 6 3 6
5 11 5 6 0 3 -4 4

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Wavelet Transform Example

Example of Application for Image Compression

1 Example with SPIHT algorithm

Figure 1 shows the example of data in a small pyramid structure, of the type resulting from an image

wavelet decomposition, that was used by J.M. Shapiro in his paper \Embedded Image Coding Using

Zerotrees of Wavelet Coe�cients," IEEE Transactions on Signal Processing,, vol. 41, Dec. 1993, to

describe his EZW image coding algorithm.

We applied the SPIHT algorithm to the same set of data, for one pass. The results are shown

in Table 1, indicating the data coded and the updating on the control lists (to save space only the

modi�cations are shown). The notation is de�ned in the patent description of the algorithm. For a

quick reference, here are some of the important de�nitions.

LIS List of insigni�cant sets: contains sets of wavelet coe�cients which are de�ned by tree structures,

and which had been found to have magnitude smaller than a threshold (are insigni�cant). The

sets exclude the coe�cient corresponding to the tree or all subtree roots, and have at least four

elements.

LIP List of insigni�cant pixels: contains individual coe�cients that have magnitude smaller than the

threshold.

LSP List of signi�cant pixels: pixels found to have magnitude larger that the threshold (are signi�-

cant).

O(i; j) in the tree structures, the set of o�spring (direct descendants) of a tree node de�ned by pixel

location (i; j).

D(i; j) set of descendants of node de�ned by pixel location (i; j).

L(i; j) set de�ned by L(i; j) = D(i; j) �O(i; j).

The following refer to the respective numbered entries in Table 1:

(1) These are the initial SPIHT settings. The initial threshold is set to 32. The notation (i,j)A or

(i,j)B, indicates that an LIS entry is of type `A' or `B', respectively. Note the duplication of

co-ordinates in the lists, as the sets in the LIS are trees without the roots. The coe�cient (0,0)

is not considered a root.

1

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

5 11 5 6 0 3 {4 4

2 {3 6 {4 3 6 3 6

3 0 {3 2 3 {2 0 4

{5 9 {1 47 4 6 {2 2

{9 {7 {14 8 4 {2 3 2

15 14 3 {12 5 {7 3 9

{31 23 14 {13 3 4 6 {1

63 {34 49 10 7 13 {12 7

Figure 1: Set of image wavelet coe�cients used by example. The numbers outside the box indicate

the set of co-ordinates used.

(2) SPIHT begins coding the signi�cance of the individual pixels in the LIP. When a coe�cient is

found to be signi�cant it is moved to the LSP, and its sign is also coded. We used the notation

1+ and 1{ to indicate when a bit 1 is immediately followed by a sign bit.

(3) After testing pixels it begins to test sets, following the entries in the LIS (active entry indicated by

bold letters). In this example D(0; 1) is the set of 20 coe�cients f(0,2), (0,3), (1,2), (1,3), (0,4),

(0,5), (0,6), (0,7), (1,4), (1,5), (1,6), (1,7), (2,4), (2,5), (2,6), (2,7), (3,4), (3,5), (3,6), (3,7)g.

Because D(0; 1) is signi�cant SPIHT next tests the signi�cance of the four o�spring f(0,2), (0,3),

(1,2), (1,3)g.

(4) After all o�spring are tested, (0,1) is moved to the end of the LIS, and its type changes from `A'

to `B', meaning that the new LIS entry meaning changed from D(0; 1) to L(0; 1) (i.e., from set

of all descendants to set of all descendants minus o�spring).

(5) Same procedure as in comments (3) and (4) applies to set D(1; 0). Note that even though no

o�spring of (1,0) is signi�cant, D(1; 0) is signi�cant because L(1; 0) is signi�cant.

(6) Since D(1; 1) is insigni�cant, no action need to be taken. The algorithm moves to the next element

in the LIS.

(7) The next LIS element, (0,1), is of type `B', and thus L(0; 1) is tested. Note that the co-ordinate

(0,1) was moved from the beginning of the LIS in this pass. It is now tested again, but with

another interpretation by the algorithm.

(8) Same as above, but L(1; 0) is sigi�cant, so the set is partitioned in D(2; 0), D(2; 1), D(3; 0), and

D(3; 1), and the corresponding entries are added to the LIS. At the same time, the entry (1,0)B

2

is removed from the LIS.

(9) The algorithm keeps evaluating the set entries as they are appended to the LIS.

(10) Each new entry is treated as in the previous cases. In this case the o�spring of (2,1) are tested.

(11) In this case, because L(2; 1) = ; (no descendant other than o�spring), the entry (2,1)A is

removed from the LIS (instead of having its type changed to `B').

(12) Finally, the last two entries of the LIS correspond to insigni�cant sets, and no action is taken.

The sorting pass ends after the last entry of the LIS is tested.

(13) The �nal list entries in this sorting pass form the initial lists in the next sorting pass, when the

threshold value is 16.

Without using any other form of entropy coding, the SPIHT algorithm used 29 bits in this �rst

pass.

2 Example with EZW algorithm

Table 2 shows the results obtained with the EZW algorithm. The explantions, and original de�nition,

can be found in the paper by J.M. Shapiro mentioned above. We use the abbreviation DL and SL for

Shapiro's dominant and subordinate lists, respectively. The notation of F following a co-ordinate on

the dominant list means that that an internal
ag is set to indicate "signi�cant" on that pass and its

magnitude on the dominant list is set to 0 for subsequent passes.

Assuming the EZW uses (at least initially) two bits to code symbols in the alphabet fPOS, NEG,

ZTR, IZg, and one bit to code the symbol Z, the EZW algorithm used 26+7=33 bits in the �rst pass.

Since both methods are coding the same bit-plane de�ned by the threshold 32, both �nd the same set

of signi�cant coe�cients, yielding images with the same mean squared error. However, SPIHT used

about 10% less bits to obtain the same results because it coded di�erent data.

The �nal lists may have some equal co-ordinates, but as shown in the examples, the interpretation

and use of those co-ordinates by the two methods are quite di�erent. Also, in the following passes

they grow and change di�erently.

3

Comm. Pixel or Output Action Control Lists
Set Tested Bit

(1) LIS = f(0,1)A,(1,0)A,(1,1)Ag
LIP = f(0,0),(0,1),(1,0),(1,1)g
LSP = ;

(2) (0;0) 1+ (0,0) to LSP LIP = f(0,1),(1,0),(1,1)g
LSP = f(0,0)g

(0;1) 1{ (0,1) to LSP LIP = f(1,0),(1,1)g
LSP = f(0,0),(0,1)g

(1;0) 0 none

(1;1) 0 none

(3) D(0;1) 1 test o�spring LIS = f(0,1)A,(1,0)A,(1,1)Ag
(0;2) 1+ (0,2) to LSP LSP = f(0,0),(0,1),(0,2)g
(0;3) 0 (0,3) to LIP LIP = f(1,0),(1,1),(0,3)g
(1;2) 0 (1,2) to LIP LIP = f(1,0),(1,1),(0,3),(1,2)g
(1;3) 0 (1,3) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3)g

(4) type changes LIS = f(1,0)A,(1,1)A,(0,1)Bg

(5) D(1;0) 1 test o�spring LIS = f(1,0)A,(1,1)A,(0,1)Bg
(2;0) 0 (2,0) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0)g
(2;1) 0 (2,1) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1)g
(3;0) 0 (3,0) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0)g
(3;1) 0 (3,1) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1)g

type changes LIS = f(1,1)A,(0,1)B,(1,0)Bg
(6) D(1;1) 0 none LIS = f(1,1)A,(0,1)B,(1,0)Bg
(7) L(0;1) 0 none LIS = f(1,1)A,(0,1)B,(1,0)Bg
(8) L(1;0) 1 add new sets LIS = f(1,1)A,(0,1)B,(2,0)A,(2,1)A,(3,0)A,(3,1)Ag
(9) D(2;0) 0 none LIS = f(1,1)A,(0,1)B,(2,0)A,(2,1)A,(3,0)A,(3,1)Ag
(10) D(2;1) 1 test o�spring LIS = f(1,1)A,(0,1)B,(2,0)A,(2,1)A,(3,0)A,(3,1)Ag

(4;2) 0 (4,2) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2)g
(4;3) 1+ (4,3) to LSP LSP = f(0,0),(0,1),(0,2),(4,3)g
(5;2) 0 (5,2) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2),(5,2)g
(5;3) 0 (5,3) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2),(5,2),(5,3)g

(11) (2,1) removed LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag
(12) D(3;0) 0 none LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag

D(3;1) 0 none LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag
(13) LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag

LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2),(5,2),(5,3)g
LSP = f(0,0),(0,1),(0,2),(4,3)g

Table 1: Example of image coding using the SPIHT method.

4

Tree Output DL: dominant list
Root Symbol SL: subordinate list

DL = f(0,0)g
SL = ;

(0,0) POS DL = f(0,0)F,(0,1),(1,0),(1,1)g
SL = f63g

(0,1) NEG DL = f(0,0)F,(1,0),(1,1),(0,2),(0,3),(1,2),(1,3),(0,1)Fg
SL = f63,34g

(1,0) IZ DL = f(0,0)F,(1,0),(1,1),(0,2),(0,3),(1,2),(1,3),(0,1)F,(2,0),(2,1),(3,0),(3,1)g
(1,1) ZTR

(0,2) POS DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F,(2,0),(2,1),(3,0),(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)Fg
SL = f63,34,49)g

(0,3) ZTR

(1,2) ZTR

(1,3) ZTR

(2,0) ZTR

(2,1) IZ DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F,
(2,0),(2,1),(3,0),(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)F, (4,2),(4,3),(5,2),(5,3)g

(3,0) ZTR

(3,1) ZTR

(0,4) Z

(0,5) Z

(1,4) Z

(1,5) Z

(4,2) Z

(4,3) POS DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F, (2,0),(2,1),(3,0),
(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)F, (4,2),(5,2),(5,3),(4,3)Fg

SL = f63,34,49,47g
(5,2) Z

(5,3) Z

DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F,(2,0),(2,1),(3,0),
(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)F, (4,2),(5,2),(5,3),(4,3)Fg

SL = f63,34,49,47g

Table 2: Example of image coding using Shapiro's EZW method.

5

Example of Application for Image Compression

1 Example with SPIHT algorithm

Figure 1 shows the example of data in a small pyramid structure, of the type resulting from an image

wavelet decomposition, that was used by J.M. Shapiro in his paper \Embedded Image Coding Using

Zerotrees of Wavelet Coe�cients," IEEE Transactions on Signal Processing,, vol. 41, Dec. 1993, to

describe his EZW image coding algorithm.

We applied the SPIHT algorithm to the same set of data, for one pass. The results are shown

in Table 1, indicating the data coded and the updating on the control lists (to save space only the

modi�cations are shown). The notation is de�ned in the patent description of the algorithm. For a

quick reference, here are some of the important de�nitions.

LIS List of insigni�cant sets: contains sets of wavelet coe�cients which are de�ned by tree structures,

and which had been found to have magnitude smaller than a threshold (are insigni�cant). The

sets exclude the coe�cient corresponding to the tree or all subtree roots, and have at least four

elements.

LIP List of insigni�cant pixels: contains individual coe�cients that have magnitude smaller than the

threshold.

LSP List of signi�cant pixels: pixels found to have magnitude larger that the threshold (are signi�-

cant).

O(i; j) in the tree structures, the set of o�spring (direct descendants) of a tree node de�ned by pixel

location (i; j).

D(i; j) set of descendants of node de�ned by pixel location (i; j).

L(i; j) set de�ned by L(i; j) = D(i; j) �O(i; j).

The following refer to the respective numbered entries in Table 1:

(1) These are the initial SPIHT settings. The initial threshold is set to 32. The notation (i,j)A or

(i,j)B, indicates that an LIS entry is of type `A' or `B', respectively. Note the duplication of

co-ordinates in the lists, as the sets in the LIS are trees without the roots. The coe�cient (0,0)

is not considered a root.

1

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

5 11 5 6 0 3 {4 4

2 {3 6 {4 3 6 3 6

3 0 {3 2 3 {2 0 4

{5 9 {1 47 4 6 {2 2

{9 {7 {14 8 4 {2 3 2

15 14 3 {12 5 {7 3 9

{31 23 14 {13 3 4 6 {1

63 {34 49 10 7 13 {12 7

Figure 1: Set of image wavelet coe�cients used by example. The numbers outside the box indicate

the set of co-ordinates used.

(2) SPIHT begins coding the signi�cance of the individual pixels in the LIP. When a coe�cient is

found to be signi�cant it is moved to the LSP, and its sign is also coded. We used the notation

1+ and 1{ to indicate when a bit 1 is immediately followed by a sign bit.

(3) After testing pixels it begins to test sets, following the entries in the LIS (active entry indicated by

bold letters). In this example D(0; 1) is the set of 20 coe�cients f(0,2), (0,3), (1,2), (1,3), (0,4),

(0,5), (0,6), (0,7), (1,4), (1,5), (1,6), (1,7), (2,4), (2,5), (2,6), (2,7), (3,4), (3,5), (3,6), (3,7)g.

Because D(0; 1) is signi�cant SPIHT next tests the signi�cance of the four o�spring f(0,2), (0,3),

(1,2), (1,3)g.

(4) After all o�spring are tested, (0,1) is moved to the end of the LIS, and its type changes from `A'

to `B', meaning that the new LIS entry meaning changed from D(0; 1) to L(0; 1) (i.e., from set

of all descendants to set of all descendants minus o�spring).

(5) Same procedure as in comments (3) and (4) applies to set D(1; 0). Note that even though no

o�spring of (1,0) is signi�cant, D(1; 0) is signi�cant because L(1; 0) is signi�cant.

(6) Since D(1; 1) is insigni�cant, no action need to be taken. The algorithm moves to the next element

in the LIS.

(7) The next LIS element, (0,1), is of type `B', and thus L(0; 1) is tested. Note that the co-ordinate

(0,1) was moved from the beginning of the LIS in this pass. It is now tested again, but with

another interpretation by the algorithm.

(8) Same as above, but L(1; 0) is sigi�cant, so the set is partitioned in D(2; 0), D(2; 1), D(3; 0), and

D(3; 1), and the corresponding entries are added to the LIS. At the same time, the entry (1,0)B

2

is removed from the LIS.

(9) The algorithm keeps evaluating the set entries as they are appended to the LIS.

(10) Each new entry is treated as in the previous cases. In this case the o�spring of (2,1) are tested.

(11) In this case, because L(2; 1) = ; (no descendant other than o�spring), the entry (2,1)A is

removed from the LIS (instead of having its type changed to `B').

(12) Finally, the last two entries of the LIS correspond to insigni�cant sets, and no action is taken.

The sorting pass ends after the last entry of the LIS is tested.

(13) The �nal list entries in this sorting pass form the initial lists in the next sorting pass, when the

threshold value is 16.

Without using any other form of entropy coding, the SPIHT algorithm used 29 bits in this �rst

pass.

2 Example with EZW algorithm

Table 2 shows the results obtained with the EZW algorithm. The explantions, and original de�nition,

can be found in the paper by J.M. Shapiro mentioned above. We use the abbreviation DL and SL for

Shapiro's dominant and subordinate lists, respectively. The notation of F following a co-ordinate on

the dominant list means that that an internal
ag is set to indicate "signi�cant" on that pass and its

magnitude on the dominant list is set to 0 for subsequent passes.

Assuming the EZW uses (at least initially) two bits to code symbols in the alphabet fPOS, NEG,

ZTR, IZg, and one bit to code the symbol Z, the EZW algorithm used 26+7=33 bits in the �rst pass.

Since both methods are coding the same bit-plane de�ned by the threshold 32, both �nd the same set

of signi�cant coe�cients, yielding images with the same mean squared error. However, SPIHT used

about 10% less bits to obtain the same results because it coded di�erent data.

The �nal lists may have some equal co-ordinates, but as shown in the examples, the interpretation

and use of those co-ordinates by the two methods are quite di�erent. Also, in the following passes

they grow and change di�erently.

3

Comm. Pixel or Output Action Control Lists
Set Tested Bit

(1) LIS = f(0,1)A,(1,0)A,(1,1)Ag
LIP = f(0,0),(0,1),(1,0),(1,1)g
LSP = ;

(2) (0;0) 1+ (0,0) to LSP LIP = f(0,1),(1,0),(1,1)g
LSP = f(0,0)g

(0;1) 1{ (0,1) to LSP LIP = f(1,0),(1,1)g
LSP = f(0,0),(0,1)g

(1;0) 0 none

(1;1) 0 none

(3) D(0;1) 1 test o�spring LIS = f(0,1)A,(1,0)A,(1,1)Ag
(0;2) 1+ (0,2) to LSP LSP = f(0,0),(0,1),(0,2)g
(0;3) 0 (0,3) to LIP LIP = f(1,0),(1,1),(0,3)g
(1;2) 0 (1,2) to LIP LIP = f(1,0),(1,1),(0,3),(1,2)g
(1;3) 0 (1,3) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3)g

(4) type changes LIS = f(1,0)A,(1,1)A,(0,1)Bg

(5) D(1;0) 1 test o�spring LIS = f(1,0)A,(1,1)A,(0,1)Bg
(2;0) 0 (2,0) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0)g
(2;1) 0 (2,1) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1)g
(3;0) 0 (3,0) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0)g
(3;1) 0 (3,1) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1)g

type changes LIS = f(1,1)A,(0,1)B,(1,0)Bg
(6) D(1;1) 0 none LIS = f(1,1)A,(0,1)B,(1,0)Bg
(7) L(0;1) 0 none LIS = f(1,1)A,(0,1)B,(1,0)Bg
(8) L(1;0) 1 add new sets LIS = f(1,1)A,(0,1)B,(2,0)A,(2,1)A,(3,0)A,(3,1)Ag
(9) D(2;0) 0 none LIS = f(1,1)A,(0,1)B,(2,0)A,(2,1)A,(3,0)A,(3,1)Ag
(10) D(2;1) 1 test o�spring LIS = f(1,1)A,(0,1)B,(2,0)A,(2,1)A,(3,0)A,(3,1)Ag

(4;2) 0 (4,2) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2)g
(4;3) 1+ (4,3) to LSP LSP = f(0,0),(0,1),(0,2),(4,3)g
(5;2) 0 (5,2) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2),(5,2)g
(5;3) 0 (5,3) to LIP LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2),(5,2),(5,3)g

(11) (2,1) removed LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag
(12) D(3;0) 0 none LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag

D(3;1) 0 none LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag
(13) LIS = f(1,1)A,(0,1)B,(2,0)A,(3,0)A,(3,1)Ag

LIP = f(1,0),(1,1),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1),(4,2),(5,2),(5,3)g
LSP = f(0,0),(0,1),(0,2),(4,3)g

Table 1: Example of image coding using the SPIHT method.

4

Tree Output DL: dominant list
Root Symbol SL: subordinate list

DL = f(0,0)g
SL = ;

(0,0) POS DL = f(0,0)F,(0,1),(1,0),(1,1)g
SL = f63g

(0,1) NEG DL = f(0,0)F,(1,0),(1,1),(0,2),(0,3),(1,2),(1,3),(0,1)Fg
SL = f63,34g

(1,0) IZ DL = f(0,0)F,(1,0),(1,1),(0,2),(0,3),(1,2),(1,3),(0,1)F,(2,0),(2,1),(3,0),(3,1)g
(1,1) ZTR

(0,2) POS DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F,(2,0),(2,1),(3,0),(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)Fg
SL = f63,34,49)g

(0,3) ZTR

(1,2) ZTR

(1,3) ZTR

(2,0) ZTR

(2,1) IZ DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F,
(2,0),(2,1),(3,0),(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)F, (4,2),(4,3),(5,2),(5,3)g

(3,0) ZTR

(3,1) ZTR

(0,4) Z

(0,5) Z

(1,4) Z

(1,5) Z

(4,2) Z

(4,3) POS DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F, (2,0),(2,1),(3,0),
(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)F, (4,2),(5,2),(5,3),(4,3)Fg

SL = f63,34,49,47g
(5,2) Z

(5,3) Z

DL = f(0,0)F,(1,0),(1,1),(0,3),(1,2),(1,3),(0,1)F,(2,0),(2,1),(3,0),
(3,1),(0,4),(0,5),(1,4),(1,5),(0,2)F, (4,2),(5,2),(5,3),(4,3)Fg

SL = f63,34,49,47g

Table 2: Example of image coding using Shapiro's EZW method.

5

© Copyright 1999 by Amir Said, All rights reserved

Baseline JPEG: compressed 45:1

© Copyright 1999 by Amir Said, All rights reserved

Wavelets & SPIHT: compressed 50:1

© Copyright 1999 by Amir Said, All rights reserved

original Wavelet & SPIHT: compressed 100:1

© Copyright 1999 by Amir Said, All rights reserved

original Wavelet & SPIHT: compressed 50:1

17/07//01 TNT
W. A. Pearlman

Conclusions

• Wavelet transform and zerotree coding
bring many desirable features:
– Progressive fidelity and resolution transmission

– Efficient lossless coding

– Low complexity

