
Appendices

2.6 Chapter 2 Appendix

2.6.1 Multivariate Gaussian Sampling

Let X = {X1, X2, ..., XN} be a random vector that follows multivariate Gaussian
distribution, i.e., X ∼ N (µ,ΣΣΣ). Directly sampling from the multivariate Gaus-
sian distribution may be challenging. This challenge can be mitigated with the
re-parameterization trick. Let Z be a random vector that follows the standard mul-
tivariate Gaussian distribution, i.e., Z ∼ N (0, I), where I is the identity covariance
matrix. We can easily prove that x = Lz +µ, where L is the lower triangle matrix
resulted from Cholesky decomposition of ΣΣΣ, i.e., Σ = LLT . As Z follows standard
multivariate Gaussian distribution, we can sample each element of Z independently,
yielding a sample zs, based on which we obtain the corresponding sample for X as
xs = Lzs + µ.

3.9 Chapter 3 Appendix

3.9.4 Inference under uncertain evidence

For a Bayesian Network (BN), we can perform probability inference for a query
node XQ given an evidence XE = xe by computing P (XQ|XE = xE). However, the
conventional inference method assumes there exists no uncertainty in the evidence.
For many real world applications, the evidence we observe contains uncertainty,
which may originate from noise in the data or from the imprecision with the evidence
measuring device. We refer such evidence as uncertain evidence. Based on how the
the uncertainty of the evidence is interpreted and represented, we can classify the
uncertain evidence into two categories: soft evidence and virtual evidence.

Let XE be the uncertain evidence variable. Soft evidence captures the un-
certainty of XE by a probability q(XE), while the virtual evidence encodes the
uncertainty in X by it’s likelihood ratio with respect to a virtual binary variable Z.
Inference with soft evidence can be performed using Jeffery’s rule [1] as in Eq. 3.56,
that is,

p(xQ|q(xE)) =
∑
xE

p(xQ|xE)q(xE) (3.185)

For virtual evidence, according to Judea Pearl [2], we can introduce a virtual
node Z as a child of XE. Z has the same states as node XE. The CPT for node
Z is partially specified by the likelihood ratio of XE, i.e., p(Z=z|XE=xE)

p(Z=z|XE 6=xE)
. Given this

specification, we can then perform inference of p(XQ|Z = z). Further details about
these two types of uncertain evidences can be found in [3, 4, 5, 6, 7, 8].

1

3.9.5 Hamiltonian Monte-Carlo (HMC) Sampling

The benefit of the MH algorithm is that it allows sampling from an un-normalized
probability. Despite it’s strengths, traditional MH algorithm uses a simple proposal
distribution, largely based on random walk, such as a Gaussian distribution; it is
hence inefficient and cannot scale up well to high dimensional space. HMC [9] was
introduced to address this limitation by employing Hamiltonian dynamics to speed
up proposal generation. In a Hamilton dynamical system, denote x as the position,
r as the momentum, t as the time, H = H(x, r, t) is the Hamiltonian function that
captures the total energy of the system and it satisfies the Hamiltonian equations:

dr

dt
= −∂H

∂x
,

dx

dt
= +

∂H
∂r

(3.186)

For a closed system, the total energy equals to sum of the potential energy and
the kinetic energy. Denote the random variables that we want to sample as x; the
position x in Eq. (3.186) is now replaced by x. Define the potential energy function
as U(x) = − log p(x) and the kinetic energy function as K(r) = 1

2
rTΣ−1r, the

Hamiltonian function can be written as

H(x, r) = U(x) +K(r) = − log p(x) +
1

2
rTΣ−1r (3.187)

where we assume r follows a Gaussian distribution N (0,Σ). Combining Eq. (3.186)
and Eq. (3.187), we can derive the update equations for the proposal in HMC. In a
discretized version, denote the step size as ε, the iteration number as i, and we have
the update equations:

ri = ri−1 − ε∇U (xi−1)

xi = xi−1 + ε∇K (ri) = xi−1 + εΣ−1ri
(3.188)

The update equation guarantees next sample has a higher probability than the
current sample. Algorithm 3.15 provides the pesudo-code for the HMC sampling
method. Further information about the HMC method may be found in [10].

2

Algorithm 3.15 Hamiltonian Monte Carlo algorithm
Input: Unnormalized target distribution p̃(x), momentum distribution p(r) =
N (0,Σ), potential energy function U(x) = − log p̃(x), the total energy function
U(x) + 1

2
rTΣ−1r, and step size ε.

Initialize: Starting position x0 at t = 0.
for t = 0, 1, 2, . . . do

rt ∼ N (0,Σ); . Sample momentum rt

rt ← rt − ε
2
∇U (xt);

for i = 1, 2, . . .m do . Simulate discretized Hamiltonian dynamics
xi ← xi−1 + εΣ−1ri−1;
ri ← ri−1 − ε∇U (xi);

end for
rm ← rm − ε

2
∇U (xm);

set (x′, r′) = (xm, rm);
A(x′,xt) = min

(
1, eH(xt,rt)−H(x′,r′)

)
; . Compute the acceptance probability

u ∼ U(0, 1); . Generate a uniform random number
if u ≤ A(x′,xt) then xt+1 = x′; . Accept x′ based on A(x′,xt)
else xt+1 = xt; . Reject x′, and use the old state
end if

end for

The benefit of HMC algorithm compared to traditional MH algorithm is that the
dynamics speeds up inference because the momentum r of the system prevents the
random walk behavior. Distances between successively generated proposal points
from HMC are typically large, so we need fewer iterations to obtain representa-
tive samples. And since the proposal distribution moves towards the direction that
maximizes the target distribution, HMC in most cases accepts new states. To sum-
marize, by explicitly exploiting the Hamiltonian dynamics, HMC is significantly
more efficient than traditional MH algorithms.

3.9.6 BN Belief propagation examples

Given the structure and parameters of a Bayesian Network as shown in Figure 3.48,
we perform detailed step-by-step calculations to perform the the sum-product and
max-product inference.

3.9.6.1 Sum-product BP examples
We first show the process for sum-product inference given a boundary evidence.

This is then followed by sum-product inference given an non-boundary evidence.

Sum-product inference given boundary evidence

We perform the sum-product inference given the evidence: M(Marry Calls) =
‘1’. Particularly, we follow the order of nodes below for message passing. Please
note this is not necessary the optimal order.

3

Figure 3.48: An example Bayesian Network

1. Node A (Alarm) collects all messages from its childrenM and J and its parents
E and B, updates its belief, and normalizes

2. Node B (Burglary) collects its message from child A, updates its belief, and
normalizes

3. Node E (Earthquake) collects its message from child A, updates its belief, and
normalizes

4. Node J (John Calls) collects its messages from it’s parents Ph and A, updates
its belief, and normalizes

5. Node Ph (Phone Rings) collects its message from child J , updates its belief,
and normalizes

6. Node M (Marry Calls) collects its message from parent A, updates its belief,
and normalizes (optional)

We first initialize the messages for the boundary nodes and the evidence nodes as
shown in Figure 3.49. The messages for the remaining nodes are initialized to ones.
In addition, the incoming messages to each node (including the evidence node) are
initialized to ones. For the evidence node M , we need revise the entries of the CPTs
involving node M as follows: the CPT entries corresponding to m 6= 1 are set to
zeros, i.e., p(m = 0|a) = 0 and the entries corresponding to m = 1, i.e., p(m = 1|a),
remain unchanged. Below, we show the detailed calculation of messages and belief
updating of each node using Eqs. (3.23-3.26) for the first iteration.

Message computation and belief updating for node A

The message node A receives from its parent E is

πe(a) = π(e)
∏

c∈Child(e)\a

λc(e) = π(e) = [0.002; 0.998] (3.189)

4

B E

𝐴𝑃!

𝐽
leaf	node:
𝜆 𝐽 = 1; 1

root	node:
𝜆 𝑃! = 1; 1
𝜋 𝑃! = 𝑃 𝑃! = 0.05; 0.95

root	node:
𝜆 𝐵 = 1,1
𝜋 𝐵 = 𝑃 𝐵 = 0.001; 0.999

root	node:
𝜆 𝐸 = 1; 1
𝜋 𝐸 = 𝑃 𝐸 = 0.002; 0.998

evidence	node:
𝜆 𝑀 = 1; 0
𝜋 𝑀 = 1; 0

𝑀= 1

Figure 3.49: Initialization of messages for sum of product inference with a boundary
evidence.

The message node A receives from its parent B is

πb(a) = π(b)
∏

c∈Child(b)\a

λc(b) = π(b) = [0.001; 0.999] (3.190)

The total message node A receives from its parents nodes E and B is

π(a) =
∑
b,e

p(a|b, e)πe(a)πb(a)

=

[∑
b,e p(a = 1|b, e)πe(a)πb(a)∑
b,e p(a = 0|b, e)πe(a)πb(a)

]
=

[
0.002516

0.997484

] (3.191)

The message node A receives from its child J is

λj(a) =
∑
j

λ(j)
∑
ph

p(j|a, ph)πph(j)

=

[∑
j λ(j)

∑
ph
p(j|a = 1, ph)πph(j)∑

j λ(j)
∑

ph
p(j|a = 0, ph)πph(j)

]
=

[
2

2

] (3.192)

where πph(j) = [1; 1] as initialized.

The message node A receives from its child M is

λm(a) =
∑
m

λ(m)p(m|a)

=

[∑
m λ(m)p(m|a = 1)∑
m λ(m)p(m|a = 0)

]
=

[
0.7

0.01

] (3.193)

The total message node A receives from its children nodes J and M is

λ(a) = λj(a)λm(a) =

[
1.4

0.02

]
(3.194)

5

Given current messages, we obtain the normalized belief of node A:

Bel(a) = απ(a)λ(a) =

[
0.150068

0.849932

]
(3.195)

Message computation and belief updating for node B

The message node B receives from its child A is

λa(b) =
∑
a

λ(a)
∑
e

p(a|b, e)πe(a)

=

[∑
a λ(a)

∑
e p(a|b = 1, e)πe(a)∑

a λ(a)
∑

e p(a|b = 0, e)πe(a)

]
=

[
1.317228

0.022178

] (3.196)

where πe(a) = [0.002; 0.998] is calculated in Eq. 3.189. The total message node B
receives from its child A is

λ(b) = λa(b) =

[
1.317228

0.022178

]
(3.197)

Given current messages, we obtain the normalized belief of node B:

Bel(b) = απ(b)λ(b) =

[
0.056117

0.943883

]
(3.198)

Message computation and belief updating for node E

The message node E receives from its child A is

λa(e) =
∑
a

λ(a)
∑
b

p(a|b, e)πb(a)

=

[∑
a λ(a)

∑
b p(a|b, e = 1)πb(a)∑

a λ(a)
∑

b p(a|b, e = 0)πb(a)

]
=

[
0.421111

0.022676

] (3.199)

where πb(a) = [0.001; 0.999] is calculated in Eq. 3.190.

The total message node E receives from its child A is

λ(e) = λa(e) =

[
0.421111

0.022676

]
(3.200)

Given current messages, we obtain the normalized belief of node E

Bel(e) = απ(e)λ(e) =

[
0.035881

0.964119

]
(3.201)

6

Message computation and belief updating for node J

The message node J receives from its parent A is

πa(j) = π(a)
∏

c∈Child(a)\j

λc(a) = π(a)λm(a) =

[
0.001761

0.009975

]
(3.202)

where λm(a) = [0.7; 0.01] is calculated in Eq. 3.193.

The message node J receives from its parent Ph is

πph(j) = π(ph)
∏

c∈Child(ph)\j

λc(ph) = π(ph) =

[
0.05

0.95

]
(3.203)

The total message node J receives from its parent nodes Ph and A is

π(j) =
∑
ph,a

p(j|ph, a)πph(j)πa(j)

=

[∑
ph,a

p(j = 1|ph, a)πph(j)πa(j)∑
ph,a

p(j = 0|ph, a)πph(j)πa(j)

]
=

[
0.001933

0.009803

] (3.204)

where πa(j) = [0.001761; 0.009975] is calculated in Eq. 3.202 and πph(j) = [0.05; 0.95]
is calculated in Eq. 3.203.

Given current messages, we obtain the normalized belief of node J

Bel(j) = απ(j)λ(j) =

[
0.164707

0.835293

]
(3.205)

Message computation and belief updating for node Ph

The message node Ph receives from its child J is

λj(ph) =
∑
j

λ(j)
∑
a

p(j|ph, a)πa(j)

=

[∑
j λ(j)

∑
a p(j|ph = 1, a)πa(j)∑

j λ(j)
∑

a p(j|ph = 0, a)πa(j)

]
=

[
0.011736

0.011736

] (3.206)

where πa(j) = [0.001761; 0.009975] is calculated in Eq. 3.202.

The total message node Ph receives from its child J is

λ(ph) = λj(ph) =

[
0.011736

0.011736

]
(3.207)

Given current messages, we obtain the normalized belief of node Ph

Bel(ph) = απ(ph)λ(ph) =

[
0.0500

0.9500

]
(3.208)

7

Message computation and belief updating for node M

πa(m) = π(a)
∏

c∈Child(a)\m

λc(a) = π(a)λj(a) =

[
0.005032

1.994968

]
(3.209)

where λj(a) = [2; 2] is calculated in Eq. 3.192. The total message node M receives
from its parent A is

π(m) =
∑
a

p(m|a)πa(m) =

[
0.023472

0

]
(3.210)

where p(m = 0|a) = 0 as we revise given the evidence m = 1. Given current
messages, we obtain the normalized belief of node M

Bel(m) = απ(m)λ(m) =

[
1

0

]
(3.211)

where λ(m) = [1; 0] as initialized. Since node M is the evidence node, its belief
doesn’t change over iterations. Note updating belief for node M is optional as it is
a boundary evidence node.

We now finish the first iteration. We repeat the above process for the second and
third iteration. During each iteration, for each node, we update its messages based
on the current messages the node receives from its parents and children. Comparing
the messages and beliefs from the second iteration and the third iteration, we can
observe that there is no change, i.e., the belief propagation converges after the second
iteration. In the end, we obtain the belief of each node given the evidence as

Bel(a) = p(a|m = 1) = [0.150068; 0.849932]

Bel(b) = p(b|m = 1) = [0.056117; 0.943883]

Bel(e) = p(e|m = 1) = [0.035881; 0.964119]

Bel(j) = p(j|m = 1) = [0.164707; 0.835293]

Bel(ph) = p(ph|m = 1) = [0.050000; 0.950000]

(3.212)

Sum-product inference given non-boundary evidence We now consider an-
other example where we are given a non-boundary evidence Alarm = ‘1’. The
initialization of the boundary nodes, the non-boundary nodes, and evidence nodes
remain the same as we did for the boundary evidence case as shown in Figure 3.50.
In addition, the incoming messages to each node are initialized to ones. For the
evidence A, the entries of CPTs involving node A are revised as follows: the en-
tries of the CPTs corresponding to a 6= 1 are set to zeros, i.e., p(a = 0|b, e) = 0,
p(j|ph, a = 0) = 0 and p(m|a = 0) = 0, while the entries of CPTs corresponding to
a = 1, i.e., p(a = 1|b, e), p(j|ph, a = 1) and p(m|a = 1), remain unchanged as the
original conditional probabilities. Given the initialization, the belief propagation
process remains the same. In the following, we perform the sum-product inference
given an non-boundary evidence Alarm = 1 for the same example shown in Figure
3.48 and following the same node order.

8

B E

𝑃!

𝐽 𝑀
leaf	node:
𝜆 𝐽 = 1; 1

root	node:
𝜆 𝐵 = 1,1
𝜋 𝐵 = 𝑃 𝐵 = 0.001; 0.999

root	node:
𝜆 𝐸 = 1; 1
𝜋 𝐸 = 𝑃 𝐸 = 0.002; 0.998

evidence	node:
𝜆 𝐴 = 1; 0
𝜋 𝐴 = 1; 0

leaf	node:
𝜆 𝑀 = 1; 1

root	node:
𝜆 𝑃! = 1; 1
𝜋 𝑃! = 𝑃 𝑃! = 0.05; 0.95

𝐴=1

Figure 3.50: Initialization of messages for sum of product inference with a non-
boundary evidence node.

Message computation and belief updating for node A 1

The message node A receives from its parent E is

πe(a) = π(e)
∏

c∈Child(e)\a

λc(e) = π(e) = [0.002; 0.998] (3.213)

The message node A receives from its parent B is

πb(a) = π(b)
∏

c∈Child(b)\a

λc(b) = π(b) = [0.001; 0.999] (3.214)

The total message node A receives from its parents nodes E and B is

π(a) =
∑
b,e

p(a|b, e)πe(a)πb(a)

=

[∑
b,e p(a = 1|b, e)πe(a)πb(a)∑
b,e p(a = 0|b, e)πe(a)πb(a)

]
=

[
0.002516

0

] (3.215)

where p(a = 0|b, e) = 0 as we revise given the evidence a = 1. The message node A
receives from its child J is

λj(a) =
∑
j

λ(j)
∑
ph

p(j|a, ph)πph(j)

=

[∑
j λ(j)

∑
ph
p(j|a = 1, ph)πph(j)∑

j λ(j)
∑

ph
p(j|a = 0, ph)πph(j)

]
=

[
2

0

] (3.216)

where πph(j) = [1; 1] as initialized, and p(j|a = 0, ph) = 0 as we revise given the
evidence a = 1.

1Updating the messages and belief for node A is necessary as it is not a boundary evidence
node and it’s messages are needed to update the belief of other nodes.

9

The message node A receives from its child M is

λm(a) =
∑
m

λ(m)p(m|a)

=

[∑
m λ(m)p(m|a = 1)∑
m λ(m)p(m|a = 0)

]
=

[
1

0

] (3.217)

where p(m|a = 0) = 0 as we revise given the evidence a = 1.

The total message node A receives from its children nodes J and M is

λ(a) = λj(a)λm(a) =

[
2

0

]
(3.218)

Given current messages, we obtain the normalized belief of node A:

Bel(a) = απ(a)λ(a) =

[
1

0

]
(3.219)

Since node A is the evidence node, its belief doesn’t change over iterations.

Messages computation and belief updating for node B

The message node B receives from its child A is

λa(b) =
∑
a

λ(a)
∑
e

p(a|b, e)πe(a)

=

[∑
a λ(a)

∑
e p(a|b = 1, e)πe(a)∑

a λ(a)
∑

e p(a|b = 0, e)πe(a)

]
=

[
1.880040

0.003156

] (3.220)

where πe(a) = [0.002; 0.998] is calculated in Eq. 3.213.

The total message node B receives from its child A is

λ(b) = λa(b) =

[
1.880040

0.003156

]
(3.221)

Given current messages, we obtain the normalized belief for node B

Bel(b) = απ(b)λ(b) =

[
0.373551

0.626449

]
(3.222)

Message computation and belief updating for node E

The message node E receives from its child A is

λa(e) =
∑
a

λ(a)
∑
b

p(a|b, e)πb(a)

=

[∑
a λ(a)

∑
b p(a|b, e = 1)πb(a)∑

a λ(a)
∑

b p(a|b, e = 0)πb(a)

]
=

[
0.581320

0.003878

] (3.223)

10

where πb(a) = [0.001; 0.999] is calculated in Eq. 3.214.

The total message node E receives from its child A is

λ(e) = λa(e) =

[
0.581320

0.003878

]
(3.224)

Given current messages, we obtain the normalized belief of node E

Bel(e) = απ(e)λ(e) =

[
0.231009

0.768991

]
(3.225)

Message computation and belief updating for node J

The message node J receives from its parent A is

πa(j) = π(a)
∏

c∈Child(a)\j

λc(a) = π(a)λm(a) =

[
0.002516

0

]
(3.226)

where λm(a) = [1; 0] is calculated in Eq. 3.217.

The message node J receives from its parent Ph is

πph(j) = π(ph)
∏

c∈Child(ph)\j

λc(ph) = π(ph) =

[
0.05

0.95

]
(3.227)

The total message node J receives from its parent nodes Ph and A is

π(j) =
∑
ph,a

p(j|ph, a)πph(j)πa(j)

=

[∑
ph,a

p(j = 1|ph, a)πph(j)πa(j)∑
ph,a

p(j = 0|ph, a)πph(j)πa(j)

]
=

[
0.002271

0.000245

] (3.228)

where πa(j) = [0.002516; 0] is calculated in Eq. 3.226 and πph(j) = [0.05; 0.95] is
calculated in Eq. 3.227.

Given current messages, we obtain the normalized belief for node J

Bel(j) = απ(j)λ(j) =

[
0.902623

0.097377

]
(3.229)

Message computation and belief updating for node Ph

The message node Ph receives from its child J is

λj(ph) =
∑
j

λ(j)
∑
a

p(j|ph, a)πa(j)

=

[∑
j λ(j)

∑
a p(j|ph = 1, a)πa(j)∑

j λ(j)
∑

a p(j|ph = 0, a)πa(j)

]
=

[
0.002516

0.002516

] (3.230)

11

where πa(j) = [0.002516; 0] is calculated in Eq. 3.226.

The total message node Ph receives from child J is

λ(ph) = λj(ph) =

[
0.002516

0.002516

]
(3.231)

Given current messages, we obtain the normalized belief for node Ph

bph(ph) = απ(ph)λ(ph) =

[
0.0500

0.9500

]
(3.232)

Message computation and belief updating for node M

The message node M receives from its parent A is

πa(m) = π(a)
∏

c∈Child(a)\m

λc(a) = π(a)λj(a) =

[
0.005032

0

]
(3.233)

where λj(a) = [2; 0] is calculated in Eq. 3.216.

The total message node M receives from its parent A is

π(m) =
∑
a

p(m|a)πa(m) =

[
0.003522

0.001510

]
(3.234)

Given current messages, we obtain the normalized belief of node M

Bel(m) = απ(m)λ(m) =

[
0.7000

0.3000

]
(3.235)

We now finish the first iteration. We repeat the above process for the second
and third iteration. Comparing the messages and beliefs from the second iteration
and the third iteration, we can observe that there is no change. i.e., the belief
propagation converges after the second iteration. In the end, we obtain the marginal
distribution of each node given the evidence as

Bel(b) = p(b|a = 1) = [0.373551; 0.626449]

Bel(e) = p(e|a = 1) = [0.231009; 0.768991]

Bel(j) = p(j|a = 1) = [0.902623; 0.097377]

Bel(ph) = p(ph|a = 1) = [0.050000; 0.950000]

Bel(m) = p(m|a = 1) = [0.700000; 0.300000]

(3.236)

12

3.9.6.2 Max-product inference given non-boundary evidence
To perform max-product inference, we only need to replace the summation op-

eration with the maximization operation. The initialization remains the same. To
illustrate the process, we perform the max-product inference given non-boundary ev-
idence: Alarm = 1. The initialization, the revision of CPTs involving node A, and
the order of nodes for updating remain the same as we did for sum-product inference
given non-boundary evidence. In the following, we show the detailed calculation of
messages and belief updating of each node for the first iteration.

Message computation and belief updating for node A

The message node A receives from its parent E is

πe(a) = π(e)
∏

c∈Child(e)\a

λc(e) = π(e) = [0.002; 0.998] (3.237)

The message node A receives from its parent B is

πb(a) = π(b)
∏

c∈Child(b)\a

λc(b) = π(b) = [0.001; 0.999] (3.238)

The total message node A receives from its parents nodes E and B is

π(a) = max
b,e

p(a|b, e)πe(a)πb(a)

=

[
maxb,e p(a = 1|b, e)πe(a)πb(a)

maxb,e p(a = 0|b, e)πe(a)πb(a)

]
=

[
0.000997

0

]
(3.239)

where p(a = 0|b, e) = 0 as we revise given the evidence a = 1. The message node A
receives from its child J is

λj(a) = max
j
λ(j) max

ph
p(j|a, ph)πph(j)

=

[
maxj λ(j) maxph p(j|a = 1, ph)πph(j)

maxj λ(j) maxph p(j|a = 0, ph)πph(j)

]
=

[
0.9500

0

]
(3.240)

where πph(j) = [1; 1] as initialized and p(j|a = 0, ph) = 0 as we revise given the
evidence a = 1.

The message node A receives from its child M is

λm(a) = max
m

λ(m)p(m|a)

=

[
maxm λ(m)p(m|a = 1)

maxm λ(m)p(m|a = 0)

]
=

[
0.7000

0

]
(3.241)

where p(m|a = 0) = 0 as we revise given the evidence a = 1.

The total message node A receives from its children nodes J and M is

λ(a) = λj(a)λm(a) =

[
0.665000

0

]
(3.242)

13

Given current messages, we obtain the normalized belief of node A:

Bel(a) = απ(a)λ(a) =

[
1

0

]
(3.243)

Since node A is the evidence node, its belief doesn’t change over iterations.

Message computation and belief updating for node B

The message node B receives from its child A is

λa(b) = max
a
λ(a) max

e
p(a|b, e)πe(a)

=

[
maxa λ(a) maxe p(a|b = 1, e)πe(a)

maxa λ(a) maxe p(a|b = 0, e)πe(a)

]
=

[
0.623850

0.000664

]
(3.244)

where πe(a) = [0.002; 0.998] is calculated in Eq. 3.237.

The total message node B receives from its child A is then

λ(b) = λa(b) =

[
0.623850

0.000664

]
(3.245)

Given current messages, we obtain the normalized belief of node B

Bel(b) = απ(b)λ(b) =

[
0.484662

0.515338

]
(3.246)

Message computation and belief updating for node E

The message node E receives from its child A is

λa(e) = max
a
λ(a) max

b
p(a|b, e)πb(a)

=

[
maxa λ(a) maxb p(a|b, e = 1)πb(a)

maxa λ(a) maxb p(a|b, e = 0)πb(a)

]
=

[
0.192657

0.000664

]
(3.247)

where πb(a) = [0.001; 0.999] is calculated in Eq. 3.238.

The total message node E receives from its child A is then

λ(e) = λa(e) =

[
0.192657

0.000664

]
(3.248)

Given current messages, we obtain the normalized belief of node E

Bel(e) = απ(e)λ(e) =

[
0.367671

0.632329

]
(3.249)

14

Message computation and belief updating for node J

The message node J receives from its parent A is

πa(j) = π(a)
∏

c∈Child(a)\j

λc(a) = π(a)λm(a) =

[
0.000698

0

]
(3.250)

where λm(a) = [0.7000; 0] is calculated in Eq. 3.241.

The message node J receives from its parent Ph is

πph(j) = π(ph)
∏

c∈Child(ph)\j

λc(ph) = π(ph) =

[
0.05

0.95

]
(3.251)

The total message node J receives from its parent nodes Ph and A is then

π(j) = max
ph,a

p(j|ph, a)πph(j)πa(j)

=

[
maxph,a p(j = 1|ph, a)πph(j)πa(j)

maxph,a p(j = 0|ph, a)πph(j)πa(j)

]
=

[
0.000597

0.000066

]
(3.252)

Given current messages, we obtain the normalized belief of node J

Bel(j) = απ(j)λ(j) =

[
0.900452

0.099548

]
(3.253)

Message computation and belief updating for node Ph

The message node Ph receives from its child J is

λj(ph) = max
j
λ(j) max

a
p(j|ph, a)πa(j)

=

[
maxj λ(j) maxa p(j|ph = 1, a)πa(j)

maxj λ(j) maxa p(j|ph = 0, a)πa(j)

]
=

[
0.000663

0.000628

]
(3.254)

where πa(j) = [0.000698; 0] is calculated in Eq. 3.250.

The total message node Ph receives from child J is then

λ(ph) = λj(ph) =

[
0.000663

0.000628

]
(3.255)

Given current messages, we obtain the normalized belief of node Ph

Bel(ph) = απ(ph)λ(ph) =

[
0.052640

0.947360

]
(3.256)

15

Message computation and belief updating for node M

The message node M receives from its parent A is

πa(m) = π(a)
∏

c∈Child(a)\m

λc(a) = π(a)λj(a) =

[
0.000947

0

]
(3.257)

where λj(a) = [0.9500; 0] is calculated in Eq. 3.240.

The total message node M receives from its parent A is then

π(m) = max
a
p(m|a)πa(m) =

[
0.000663

0.000284

]
(3.258)

Given current messages, we obtain the normalized belief of node M

Bel(m) = απ(m)λ(m) =

[
0.7000

0.3000

]
(3.259)

We now finish the first iteration. We repeat the above process for two more
iterations, and observe that there is no change in the messages and beliefs at third
iteration, i.e., the belief propagation converges after the second iteration. We can
then find the unique MAP assignment by performing max marginal for each node
independently if there are no ties in any of the updated node beliefs, yielding the
MAP configuration for the example as

[0, 0, 1, 0, 1] = arg max
b,e,j,ph,m

p(b, e, j, ph,m|a = 1) (3.260)

via x∗ = arg maxxBel(x) for x ∈ {B,E, J, Ph,M}.

3.9.7 EM learning for HMM

In this section, we introduce HMM learning using the standard EM method. Let an
HMM be defined over the state variables Q, observation variables O, and parameters
λλλ = {Λ, A,B}. Given the training sequences O = {O(m)}Mm=1, where O(m) =
{Ot(m)}tmt=0, HMM learning is to find λλλ by maximizing it’s log-likelihood, i.e.,

λλλ∗ = arg max
λλλ

log p(O|λλλ)

16

Let Q(m) be the unobserved state sequence corresponding to O(m), log p(O|λλλ) can
be computed as follows

log p(O|λλλ) =

M∑
m=1

log p(O(m)|λλλ)

=

M∑
m=1

log
∑
Q(m)

p(O(m), Q(m)|λλλ),

=

M∑
m=1

log
∑
Q(m)

q(Q(m)|O(m),Θq)
p(O(m), Q(m)|λλλ)

q(Q(m)|O(m),Θq)

≥
M∑
m=1

∑
Q(m)

q(Q(m)|O(m),Θq) log p(O(m), Q(m)|λλλ) Jensen’s inequality

=
M∑
m=1

∑
Q(m)

q(Q(m)|O(m),Θq) log p(O0(m)|Λ)

tm∏
t=1

p(Ot(m)|Qt(m)|B)p(Qt(m)|Qt−1(m),A)

=
M∑
m=1

∑
Q(m)

q(Q(m)|O(m),Θq) log p(O0(m)|Λ) +

M∑
m=1

∑
Q(m)

q(Q(m)|O(m),Θq)

tm∑
t=1

log(Ot(m)|Qt(m),B) +

M∑
m=1

∑
Q(m)

q(Q(m)|O(m),Θq)

tm∑
t=1

log p(Qt(m)|Qt−1(m),A) (3.261)

It is clear from Eq. 3.261 that given q(Q(m)|O(m),Θq), parameters Λ, A, and B can
be computed separately by maximizing their expected likelihoods, corresponding to
the three terms. Based on this, we can introduce the EM method as follows.

Set q(Q(m)|O(m),Θq) = p(Q(m)|O(m),λλλt−1) and initialize λλλ to λλλ0.
E-step:
Compute p(Q(m)|O(m),λλλt−1) for all possible configurations of Q(m) and for all
sequences
M-step:
Find Λt, At, and Bt by maximizing the their expected loglikelihood, i.e.,

Λt = arg max
Λ

M∑
m=1

∑
Q(m)

p(Q(m)|O(m),λλλt−1) log p(O0(m)|Λ)

Bt = arg max
B

M∑
m=1

∑
Q(m)

p(Q(m)|O(m),λλλt−1)
tm∑
t=1

log(Ot(m)|Qt(m),B)

At = arg max
A

M∑
m=1

∑
Q(m)

p(Q(m)|O(m),λλλt−1)
tm∑
t=1

log p(Qt(m)|Qt−1(m),A)

Repeat the E and M steps until convergence

17

Algorithm 3.16 HMM EM learning pseudo-code
Initialize λλλ to λλλ0 and w(c,m) and S(m, t, i, j) to zeros
E-step:
for m = 1 to M do

for c = 1 to Cm do . Cm is the number of configurations of Q(m)
w(c,m) = p(Qc(m), O(m)|λλλt−1) . Qc(m) is the c-th configuration of Q(m)

end for
end for
Compute the expected state transition counts
for m = 1 to M do

for c = 1 to Cm do
for i = 1 to N do

for j = 1 to N do
S(m, t, i, j) = S(m, t, i, j) + I(Qt−1

c (m) = i ∧Qt
c(m) = j)w(c,m)

end for
end for

end for
end for
M-step:

aij =

∑M
m=1

∑tm
t=0 S(m, t, i, j)∑M

m=1

∑tm
t=1

∑N
j=1 S(m, t, i, j)

bi(k) =

∑M
m=1

∑tm
t=0

∑N
j=1 S(m, t, i, j)I(Ot(m) = k)∑M

m=1

∑tm
t=0

∑N
j=1 S(m, t, i, j)

πi =

∑M
m=1

∑N
j=1 S(m, 0, i, j)∑M
m=1Cm

Repeat E and M step until convergence

3.9.8 Discrete BN structure learning with marginal likelihood score

Given the training data, D = {D1, D2, ..., DM}, where Dm = {xm1 , xm2 , ..., xmN}, the
maximum likelihood learning of the BN structure can be formulated as finding the
BN structure that maximizes the marginal log likelihood of the structure G, i.e.,

G∗ = arg max
G

log p(D|G) (3.262)

where log p(D|G) is the log marginal likelihood of G given the training data D. As
log p(D|G) is decomposable, it can be rewritten as

log p(D|G) = log
N∏
n=1

p(D|Gn) =
N∑
n=1

log p(D|Gn) (3.263)

18

where Gn = {xn, π(xn)} represents the local structure for node xn. Hence, the
structure for each node can be learned separately, i.e.,

G∗n = arg max
Gn

log p(D|Gn) (3.264)

By conditioning on θn, the parameters for node n, log p(D|Gn) can be rewritten as

log p(D|Gn) = log

∫
p(D|Gn, θn)p(θn|Gn)dθn (3.265)

where the first term is the joint likelihood of the structure and parameters for node xn
and the second term is the prior distribution of xn’s parameters given its structure.
For a discrete BN, where xn ∈ {1, 2, ...Kn}, θn can be written as θn = {θnj}Jnj=1,
where j is the index to the jth parent configuration and Jn is the total number
of parent configurations for node xn. Assuming θnj are independent of each other,
p(θn|Gn) can be calculated as

p(θn|Gn) =
Jn∏
j=1

p(θnj|Gn) =
Jn∏
j=1

∏Kn

k=1 θ
αnjk−1

njk

B(αnjk)
(3.266)

where θnjk is assumed to follow Dirichlet distribution with hyper-parameters αnjk,
and B(αnjk) =

∏Kn
k=1 Γ(αnjk)

Γ(
∑Kn

k=1 αnjk)
and Γ() is the Gamma function.

Furthermore,

p(D|Gn, θn) =
M∏
m=1

p(Dm|Gn, θn)

=
M∏
m=1

p(xmn |π(xn)m, θn) =
M∏
m=1

Jn∏
j=1

p(xmn |π(xn)m = j, θnj)

=
M∏
m=1

Jn∏
j=1

Kn∏
k=1

θ
I(xmn =k&π(xn)m=j
njk) =

Jn∏
j=1

Kn∏
k=1

θ
∑M

m=1 I(x
m
n =k&π(xn)m=j

njk)

=
Jn∏
j=1

Kn∏
k=1

θNnjk (3.267)

where I() is the indicator function and Nnjk is the counts for node xn with a value
of k and jth parent configuration.

Incorporating Eq. 3.266 and Eq. 3.267 into Eq. 3.265 yields

19

log p(D|Gn) = log

∫
p(D|Gn, θn)p(θn|Gn)

= log

∫ Jn∏
j=1

Kn∏
k=1

θNnjk

Jn∏
j=1

∏Kn

k=1 θ
αnjk−1

njk

B(αnjk)
dθnjk

= log

∏Jn
j=1

∫ ∏Kn

k=1 θ
Nnjk+αnjk−1

B(α)
dθnjk

=
Jn∑
j=1

log
B(αnjk +Nnjk)

B(αnjk)

∫ ∏Kn

k=1 θ
Nnjk+αnjk−1

B(αnjk +Nnjk)︸ ︷︷ ︸
integration to 1

dθnjk

=
Jn∑
j=1

log
B(αnjk +Nnjk)

B(αnjk)
(3.268)

Incorporating Eq. 3.268 into Eq. 3.263 yields

log p(D|G) =
N∑
n=1

Jn∑
j=1

log
B(αnjk +Nnjk)

B(αnjk)

=
N∑
n=1

Jn∑
j=1

log
Γ(
∑Kn

k=1 αnjk)
∏Kn

k=1 Γ(Nnjk + αnjk)∏Kn

k=1 Γ(αnjk)Γ(
∑Kn

k=1(Nnjk + αnjk))
(3.269)

Assuming symmetric prior, i.e., αnjk = α
Kn×Jn , where α is a tuning parameter called

equivalent sample size, Eq. 3.263 can be rewritten as

log p(D|G) =
N∑
n=1

Jn∑
j=1

log
Γ(αnjkKn)

∏Kn

k=1 Γ(Nnjk + αnjk)

ΓKn(αnjk)Γ(Nnj + αnjkKn)
(3.270)

Further assuming uniform prior, i.e., αnjk = 1, Eq. 3.269 can be rewritten as

log p(D|G) =
N∑
n=1

Jn∑
j=1

log
(Kn − 1)!

∏Kn

k=1 Nnjk!

(Nnj +Kn − 1)!
(3.271)

where we use the fact that Γ(1) = 1 and Γ(n + 1) = n! for n > 0. Alternative
independent derivations of the marginal likelihood score may be found in [11]. The
marginal likelihood score is also called Bayesian Dirichlet score in the literature.
And Eq. 3.270 is called the Bayesian Dirichlet Equivalent Uniform (BDeu) score
and Eq. 3.271 is the K2 score. Compared to the BIC score, the marginal likelihood
score does not have any assumptions such as a large number of samples and the
Gaussian distribution, and empirical results show that it outperforms BIC score
in the accuracy with the learned BN structures, in particular when the amount
of training data is small. Additional analysis on the marginal likelihood score for
learning discrete BN structures may be found in [12].

20

4.8 Chapter 4 Appendix

4.8.1 Examples for Belief Propagation in MRF

Given the the binary MRF in Figure 4.10,

BA

D
𝑑 = {−1,1}

𝑏 = {−1,1}𝑎 = {−1,1}

C=1 E
𝑒 = {−1,1}

Figure 4.10: Structure of a binary MRF with evidence

it’s unary potentials,

φA(a) =

[
exp(−1.2)

exp(2)

]

φB(b) =

[
exp(0.8)

exp(−0.2)

]

φC(c) =

[
exp(−1.3)

exp(−0.2)

]

φD(d) =

[
exp(0.2)

exp(−0.2)

]

φE(e) =

[
exp(−0.5)

exp(0.5)

]

(4.67)

21

and pairwise potentials,

ψAC(a, c) =

[
exp(2) exp(−1)

exp(−1) exp(2)

]

ψBC(b, c) =

[
exp(−0.3) exp(1.2)

exp(1.2) exp(−0.3)

]

ψBE(b, e) =

[
exp(0.5) exp(1)

exp(1) exp(0.5)

]

ψDC(d, c) =

[
exp(0.9) exp(−0.2)

exp(−0.2) exp(0.9)

]
(4.68)

we show below the process for performing belief propagation for both sum-product
and max-product inference for this MRF.

4.8.1.1 Sum-product inference with evidence
We now perform sum-product inference, given c = 1. During initialization, the

entries of the unary and pairwise potential functions involving the evidence node C
corresponding to c = 0 are set to zero and remain unchanged otherwise, i.e.,

φC(c) =

[
0

exp(−0.2)

]

ψAC(a, c) =

[
0 exp(−1)

0 exp(2)

]

ψBC(b, c) =

[
0 exp(1.2)

0 exp(−0.3)

]

ψDC(d, c) =

[
0 exp(−0.2)

0 exp(0.9)

]
(4.69)

Messages for all nodes are initialized to ones. For each node, we update the
messages it receives from its neighbors based on their current messages. We calculate
messages and belief of each node using Eq. (4.30) and (4.31) as shown below.

Node A: The message node A receives from its neighbor node C is calculated as

mCA(a) =
∑
c

φC(c)ψAC(a, c)mBC(c)mDC(c) =

[
0.3012

6.0496

]
(4.70)

where mBC and mDC take on their current values (i.e., initial values). The belief of
node A given current message is then

Bel(a) = αφA(a)mCA(a) =

[
0.0020

0.9980

]
(4.71)

22

where α is the normalization constant.

Node B: The messages node B receives from its neighbor nodes C and E are calcu-
lated as

mCB(b) =
∑
c

φC(c)ψBC(b, c)mAC(c)mDC(c) =

[
2.7183

0.6065

]
(4.72)

mEB(b) =
∑
e

φE(e)ψBE(b, e) =

[
5.4817

4.3670

]
(4.73)

wheremAC andmDC assume their current values. The belief of node B given current
messages is then

Bel(b) = αφB(b)mCB(b)mEB(b) =

[
0.9386

0.0614

]
(4.74)

Node C: The messages node C receives from its neighbor nodes A,B and, D are
calculated as

mAC(c) =
∑
a

φA(a)ψAC(a, c) =

[
0

54.7090

]
(4.75)

mBC(c) =
∑
b

φB(b)ψBC(b, c)mEB(b) =

[
0

43.1532

]
(4.76)

mDC(c) =
∑
d

φD(d)ψDC(d, c) =

[
0

3.0138

]
(4.77)

where mEB = [5.4817; 4.3670] is calculated in Eq. 4.73. The belief of node C given
current messages is then

Bel(c) = αφC(c)mAC(c)mBC(c)mDC(c) =

[
0

1

]
(4.78)

Since node C is the evidence node with c = 1, its belief doesn’t change over iterations.

Node D: The message node D receives from its neighbor node C is calculated as

mCD(d) =
∑
c

φC(c)ψCD(c, d)mAC(c)mBC(c) =

[
1582.5

4754.2

]
(4.79)

where mAC = [0; 54.7090] is calculated in Eq. 4.75 and mBC = [0; 43.1532] is calcu-
lated in Eq. 4.76. The belief of node D given current message is then

Bel(d) = αφD(d)mCD(d) =

[
0.3318

0.6682

]
(4.80)

23

Node E: The message node E receives from its neighbor node B is calculated as

mBE(e) =
∑
b

φB(b)ψBE(b, e)mCB(b) =

[
11.3240

17.2634

]
(4.81)

where mCB = [2.7183; 0.6065] is calculated in Eq. 4.72. The belief of node E given
current message is then

Bel(e) = αφE(e)mBE(e) =

[
0.1944

0.8056

]
(4.82)

We now finish the first iteration. We repeat the process for several times and observe
that the messages do not change in the third iteration. Thus, the belief propagation
converges after the second iteration. In the end, we obtain the belief of each node
given the evidence as

Bel(a) = p(a|c = 1) = [0.0020; 0.9980]

Bel(b) = p(b|c = 1) = [0.9386; 0.0614]

Bel(d) = p(d|c = 1) = [0.3318; 0.6682]

Bel(e) = p(e|c = 1) = [0.1944; 0.8056]

(4.83)

4.8.1.2 Max-product inference with evidence
To perform max-product inference, we only need to replace the summation op-

eration in the sum-product inference with the maximization operation, and the
remaining calculations remain the same. We follow the same procedure to initialize
messages for all nodes to ones. Unary and pairwise potential functions correspond-
ing to the unobserved state of the evidence node are set to 0, and remain unchanged
otherwise. Max-product propagation can then start.

Node A: The message node A receives from its neighbor node C is calculated as

mCA(a) = max
c
φC(c)ψAC(a, c)mBC(c)mDC(c) =

[
0.3012

6.0496

]
(4.84)

where mBC and mDC are all ones as initialized. The belief of node A given current
message is then

Bel(a) = αφA(a)mCA(a) =

[
0.0020

0.9980

]
(4.85)

Node B: The messages node B receives from its neighbor nodes C and E are calcu-
lated as

mCB(b) = max
c
φC(c)ψBC(b, c)mAC(c)mDC(c) =

[
2.7183

0.6065

]
(4.86)

mEB(b) = max
e
φE(e)ψBE(b, e) =

[
4.4817

2.7183

]
(4.87)

24

where mAC and mDC are all ones as initialized. The belief of node B given current
messages is then

Bel(b) = αφB(b)mCB(b)mEB(b) =

[
0.9526

0.0474

]
(4.88)

Node C: The messages node C receives from its neighbor nodes A, B, and D are
calculated as

mAC(c) = max
a
φA(a)ψAC(a, c) =

[
0

54.5982

]
(4.89)

mBC(c) = max
b
φB(b)ψBC(b, c)mEB(b) =

[
0

33.1155

]
(4.90)

mDC(c) = max
d
φD(d)ψDC(d, c) =

[
0

2.0138

]
(4.91)

where mEB = [4.4817; 2.7183] is calculated in Eq. 4.87. The belief of node C given
current messages is then

Bel(c) = αφC(c)mAC(c)mBC(c)mDC(c) =

[
0

1

]
(4.92)

Since node C is the evidence node with c = 1, its belief doesn’t change over iterations.

Node D: The message node D receives from its neighbor node C is calculated as

mCD(d) = max
c
φC(c)ψCD(c, d)mAC(c)mBC(c) =

[
1212.0

3641.0

]
(4.93)

where mAC = [0; 54.5982] and mBC = [0; 33.1155] are calculated in Eq. 4.89 and
Eq. 4.90 respectively. The belief of node D given current message is then

Bel(d) = αφD(d)mCD(d) =

[
0.3318

0.6682

]
(4.94)

Node E: The message node E receives from its neighbor node B is calculated as

mBE(e) = max
b
φB(b)ψBE(b, e)mCB(b) =

[
9.9742

16.4446

]
(4.95)

where mCB = [2.7183; 0.6065] is calculated in Eq. 4.86. The belief of node E given
current message is then

Bel(e) = αφE(e)mBE(e) =

[
0.1824

0.8176

]
(4.96)

25

We now finish the first iteration. We repeat the process for several iterations
and observe that the messages do not change in the third iteration. Thus, the belief
propagation converges after the second iteration. Given the beliefs, we have the
MAP configuration as

[1,−1, 1, 1] = arg max
a,b,d,e

p(a, b, d, e|c = 1) (4.97)

where x∗ = arg maxxBel(x) for x ∈ {A,B,D,E}.

References

[1] R. C. Jeffrey, The logic of decision. University of Chicago Press, 1990.

[2] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier, 2014.

[3] H. Chan and A. Darwiche, “On the revision of probabilistic beliefs using uncer-
tain evidence,” Artificial Intelligence, vol. 163, no. 1, pp. 67–90, 2005.

[4] M. Valtorta, Y.-G. Kim, and J. Vomlel, “Soft evidential update for probabilistic
multiagent systems,” International Journal of Approximate Reasoning, vol. 29,
no. 1, pp. 71–106, 2002.

[5] Y. Peng, S. Zhang, and R. Pan, “Bayesian network reasoning with uncertain ev-
idences,” International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 18, no. 05, pp. 539–564, 2010.

[6] J. Bilmes, “On virtual evidence and soft evidence in bayesian networks,” 2004.

[7] F. J. Groen and A. Mosleh, “Foundations of probabilistic inference with uncer-
tain evidence,” International Journal of Approximate Reasoning, vol. 39, no. 1,
pp. 49–83, 2005.

[8] R. Pan, Y. Peng, and Z. Ding, “Belief update in bayesian networks using un-
certain evidence,” in 2006 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’06), pp. 441–444, IEEE, 2006.

[9] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid monte
carlo,” Physics letters B, vol. 195, no. 2, pp. 216–222, 1987.

[10] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of markov
chain monte carlo, vol. 2, no. 11, p. 2, 2011.

[11] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning bayesian networks:
The combination of knowledge and statistical data,” Machine learning, vol. 20,
no. 3, pp. 197–243, 1995.

[12] M. Scutari, “An empirical-bayes score for discrete bayesian networks,” in
Conference on probabilistic graphical models, pp. 438–448, PMLR, 2016.

26

	Chapter 2 Appendix
	Multivariate Gaussian Sampling

	Chapter 3 Appendix
	Inference under uncertain evidence
	Hamiltonian Monte-Carlo (HMC) Sampling
	BN Belief propagation examples
	EM learning for HMM
	Discrete BN structure learning with marginal likelihood score

	Chapter 4 Appendix
	Examples for Belief Propagation in MRF

