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Abstract

The tracking and recognition of facial activities from images or videos attracted great attention

in computer vision field. Facial activities are characterized by three levels: First, in the bottom level,

facial feature points around each facial component, i.e., eyebrow, mouth, etc, capture the detailed face

shape information; Second, in the middle level, facial action units (AUs), defined in Facial Action

Coding System, represent the contraction of a specific set of facial muscles, i.e., lid tightener, eyebrow

raiser, etc; Finally, in the top level, six prototypical facial expressions represent the global facial

muscle movement and are commonly used to describe the human emotion state. In contrast to the

mainstream approaches, which usually only focus on one or two levels of facial activities, and track

(or recognize) them separately, this paper introduces a unified probabilistic framework based on the

Dynamic Bayesian network (DBN) to simultaneously and coherently represent the facial evolvement

in different levels, their interactions and their observations. Advanced machine learning methods are

introduced to learn the model based on both training data and subjective prior knowledge. Given the

model and the measurements of facial motions, all three levels of facial activities are simultaneously

recognized through a probabilistic inference. Extensive experiments are performed to illustrate the

feasibility and effectiveness of the proposed model on all three level facial activities.

Index Terms

Simultaneous tracking and recognition, facial feature tracking, facial action unit recognition,

expression recognition, Bayesian network.

I. INTRODUCTION

The recovery of facial activities in image sequence is an important and challenging prob-

lem. In recent years, plenty of computer vision techniques have been developed to track or

recognize the facial activities in three levels. First, in the bottom level, facial feature tracking,
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which usually detects and tracks prominent landmarks surrounding facial components (i.e.,

mouth, eyebrow, etc), captures the detailed face shape information; Second, facial actions

recognition, i.e., recognize facial action units (AUs) defined in FACS [1], try to recognize

some meaningful facial activities (i.e., lid tightener, eyebrow raiser, etc); In the top level,

facial expression analysis attempts to recognize facial expressions that represent the human

emotion states.

The facial feature tracking, AU recognition and expression recognition represent the facial

activities in three levels from local to global, and they are interdependent problems. For exam-

ple, the facial feature tracking can be used in the feature extraction stage in expression/AUs

recognition, and the expression/AUs recognition results can provide a prior distribution for

the facial feature points. However, most current methods only track or recognize the facial

activities in one or two levels, and track them separately, either ignoring their interactions

or limiting the interaction to one way. In addition, the computer vision measurements in

each level are always uncertain and ambiguous because of noise, occlusion and the imperfect

nature of the vision algorithm.

In this paper, in contrast to the mainstream approach, we build a probabilistic model based

on the Dynamic Bayesian network (DBN) to capture the facial interactions at different levels.

Hence, in the proposed model, the flow of information is two-way, not only bottom-up,

but also top-down. In particular, not only the facial feature tracking can contribute to the

expression/AUs recognition, but also the expression/AUs recognition help further improve

the facial feature tracking performance. Given the proposed model, all three levels of facial

activities are recovered simultaneously through a probabilistic inference by systematically

combining the measurements from multiple sources at different levels of abstraction.

The proposed facial activity recognition system consists of two main stages: offline facial

activity model construction and online facial motion measurement and inference. Specifically,

using training data and subjective domain knowledge, the facial activity model is constructed

offline. During the online recognition, as shown in Fig. 1, various computer vision techniques

are used to track the facial feature points, and to get the measurements of facial motions

(AUs). These measurements are then used as evidence to infer the true states of the three

level facial activities simultaneously.

The paper is divided as follows: In Sec. II, we present a brief reviews on the related

works on facial activity analysis; Sec. III describes the details of facial activity modeling,
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Fig. 1. The flowchart of the online facial activity recognition system

i.e., modeling the relationships between facial features and AUs (Sec. III-B), modeling the

semantic relationships among AUs (Sec. III-C), and modeling the relationships between AUs

and expressions (Sec. III-D); In Sec. IV, we construct the dynamic dependency and present

a complete faical action model; Sec. V shows the experimental results on two databases. The

paper concludes in Sec .VI with a summary of our work and its future extensions.

II. RELATED WORKS

In this section, we are going to introduce the related works on facial feature tracking,

expression/AUs recognition and simultaneous facial activity tracking/recognition, respectively.

A. Facial Feature Tracking

Facial feature points encode critical information about face shape and face shape defor-

mation. Accurate location and tracking of facial feature points is important in the applica-

tions such as animation, computer graphics, etc. Generally, the facial feature points tracking

technologies could be classified into two categories: model free and model-based tracking

algorithms. Model free approaches [49] [50] [51] are general purpose point trackers without

the prior knowledge of the object. Each facial feature point is usually detected and tracked

individually by performing a local search for the best matching position. However, the model

free methods are susceptible to the inevitable tracking errors due to the aperture problem,

noise, and occlusion. Model based methods, such as active shape model (ASM) [3], active

appearance model (AAM) [4], direct appearance model (DAM) [5], etc, on the other hand,

focus on explicit modeling the shape of the objects. The ASM proposed by Cootes et al. [3],

is a popular statistical model-based approach to represent deformable objects, where shapes

are represented by a set of feature points. Feature points are first searched individually, and
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then principal component analysis (PCA) is applied to analyze the models of shape variation

so that the object shape can only deform in specific ways that are found in the training data.

Robust parameter estimation and Gabor wavelets have also been employed in ASM to improve

the robustness and accuracy of feature point search [6] [7]. The AAM [4] and DAM [2] are

subsequently proposed to combine constraints of both shape variation and texture variation.

In the conventional statistical models, i.e. ASM, the feature point positions are updated

(or projected) simultaneously, which indicates that the interactions within feature points are

simply concurrent. Intuitively, human faces have a sophisticated structure, and a simple parallel

mechanism may not be adequate to describe the interactions among facial feature points. For

example, whether the eye is open or closed will not affect the localization of mouth or nose.

Tong et al. [8] developed an ASM based two-level hierarchical face shape model, in which

they used multi-state ASM model for each face component to capture the local structural

details. For example, for mouth, they used three ASMs to represent the three states of mouth,

i.e., widely open, open and closed. However, the discrete states still cannot describe the

details of each facial component movement, i.e., only three discrete states are not sufficient

to describe all mouth movements. At the same time, facial action units (AUs) congenitally

characterize face component movements, therefore, involving AUs information during facial

feature points tracking may help further improve the tracking performance.

B. Expression/AUs Recognition

Facial expression recognition systems usually try to recognize either six expressions or the

AUs. Over the past decades, there has been extensive research in computer vision on facial

expression analysis [22] [14] [9] [16] [25]. Current methods in this area can be grouped into

two categories: image-driven method and model-based method.

Image-driven approaches, which focus on recognizing facial actions by observing the

representative facial appearance changes, usually try to classify expression or AUs indepen-

dently and statically. This kind of method usually consists of two key stages; First, various

facial features, such as optical flow [9] [10], explicit feature measurement (i.e., length of

wrinkles and degree of eye opening) [16], Haar features [11] [38], Local Binary Patterns

(LBP) features [32] [33], independent component analysis (ICA) [12], feature points [49],

Gabor wavelets [14], etc., are extracted to represent the facial gestures or facial movements.

Given the extracted facial features, the expression/AUs are identified by recognition engines,

such as Neural Networks [15] [16], Support Vector Machines (SVM) [14] [21], rule-based
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approach [22], AdaBoost classifiers, Sparse Representation (SR) classifiers [34] [35], etc. A

survey about expression recognition can be found in [23].

The common weakness of appearance-based methods for AU recognition is that they tend

to recognize each AU or certain AU combinations individually and statically directly from the

image data, ignoring the semantic and dynamic relationships among AUs, although some of

them analyze the temporal properties of facial features, i.e., [46] [17]. Model-based methods

overcome this weakness by making use of the relationships among AUs, and recognize the

AUs simultaneously. Lien et al. [24] employed a set of Hidden Markov Models (HMMs) to

represent the facial actions evolution in time. The classification is performed by choosing the

AU or AU combination that maximizes the likelihood of the extracted facial features generated

by the associated Hidden Markov Model (HMM). Valstar et al. [18] used a combination of

SVMs and HMMs, and outperformed the SVM method for almost every AU by modeling

the temporal evolution of facial actions. Both methods exploit the temporal dependencies

among AUs. They, however, fail to exploit the spatial dependencies among AUs. To remedy

this problem, Tong and Ji [26] [25] employed a Dynamic Bayesian network to systematically

model the spatiotemporal relationships among AUs, and achieved significant improvement

over the image-driven method. In this work, besides modeling the spatial and temporal

relationships among AUs, we also make use of the information of expression and facial

feature points, and more importantly, the coupling and interactions among them.

C. Simultaneous Facial Activity Tracking/Recognition

The idea of combining tracking with recognition has been attempted before, such as simul-

taneous facial feature tracking and expression recognition [52] [49] [53] [48], and integrating

face tracking with video coding [28]. However, in most of these works, the interaction between

facial feature tracking and facial expression recognition is one-way, i.e., feed facial feature

tracking results to facial expression recognition [49] [53]. There is no feedback from the

recognition results to facial feature tracking. Most recently, Dornaika et al. [27] and Chen &

Ji [31] improved the facial feature tracking performance by involving the facial expression

recognition results. However, in [27], they only model six expressions and they need to retrain

the model for a new subject, while in [31], they represented all upper facial action units in

one vector node and in such a way, they ignored the semantic relationships among AUs,

which is a key point to improve the AU recognition accuracy.

Compared to the previous related works, this paper has the following features:
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Fig. 2. Comparison of different tracking models: (a) traditional tracking model, (b) tracking model with switch node, (c)

and the proposed facial activity tracking model.

1) First, we build a DBN model to explicitly model the two-way interactions between different

levels of facial activities. In this way, not only the expression and AU recognition can

benefit from the facial feature tracking results, but also the expression recognition can

help improve the facial feature tracking performance.

2) Second, we recognize all three levels of facial activities simultaneously. Given the facial

action model and image observations, all three levels of facial activities are estimated

simultaneously through a probabilistic inference by systematically integrating visual mea-

surements with the proposed model.

III. FACIAL ACTIVITY MODELING

A. Overview of the facial activity model

1) Single Dynamic model: The graphical representation of the traditional tracking algo-

rithm, i.e., Kalman Filter, is shown in Fig. 2(a). Xt is the current hidden state, i.e., facial

feature points, we want to track, and Mt is the current image measurement (Hereafter, the

shaded nodes represent measurements and the unshaded nodes denote the hidden states). The

directed links are quantified by the conditional probabilities, i.e. the link from Xt to Mt is

captured by the likelihood P (Mt|Xt), and the link from Xt−1 to Xt by the first order dynamic

P (Xt|Xt−1).

For online tracking, we want to estimate the posterior probability based on the previous

posterior probability and the current measurement.

P (Xt|M1:t) ∝ P (Mt|Xt)

∫
Xt−1

P (Xt|Xt−1)P (Xt−1|M1:t−1) (1)
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M1:t is the measurement sequence from frame 1 to t. If both Xt and Mt are continuous and

all the condition probabilities are linear Gaussian, this model is a Linear Dynamic System

(LDS).

2) Dynamic model with switching node: The above tracking model has only one single

dynamic P (Xt|Xt−1), and this dynamic is fixed for the whole sequence. But for many

applications, we hope that the dynamic can “switch” according to different states. Therefore,

researchers introduce a switch node to control the underling dynamic system [29] [30]. For the

switching dynamic model, the switch node represents different states and for each state, there

are particular predominant movement patterns. The works in [27] and [31] also involved multi-

dynamics, and their idea can be interpreted as the graphical model in Fig. 2(b). The St is the

switch node, and for each state of St, there is a specific transition parameter P (Xt|Xt−1, St)

to model the dynamic between Xt and Xt−1. Through this model, Xt and St can be tracked

simultaneously, and their posterior probability is:

P (Xt, St|M1:t) ∝ P (Mt|Xt)

∫
Xt−1,St−1

P (Xt|Xt−1, St)

P (St|St−1)P (Xt−1, St−1|M1:t−1) (2)

In [27], they propose to use particle filtering to estimate this posterior probability.

3) Our facial activity model: Dynamic Bayesian network is a directed graphical model, and

compared to the dynamic models above, DBN is more general to capture complex relationships

among variables. We propose to employ DBN to model the spatiotemporal dependencies

among all three levels of facial activities (facial feature points, AUs and expression) as shown

in Fig. 2(c) (Fig. 2(c) is not the final DBN model, but a graphical representation of the

causal relationships between different levels of facial activities). The Et node in the top level

represents the current expression; AUt represents a set of AUs; Xt denotes the facial feature

points we are going to track; MAUt and MXt are the corresponding measurements of AUs and

the facial feature points, respectively. The three levels are organized hierarchically in a causal

manner such that the level above is the cause while the level below is the effect. Specifically,

the global facial expression is the main cause to produce certain AU configurations, which in

turn causes local muscle movements, and hence facial feature point movements. For example, a

global facial expression (e.g. Happiness) dictates the AU configurations, which in turn dictates

the facial muscle movement and hence the facial feature point positions.

For the facial expression in the top level, we will focus on recognizing six basic facial

expressions, i.e., happiness, surprise, sadness, fear, disgust and anger. Though psychologist



SUBMIT TO IEEE TRANSACTIONS ON IMAGE PROCESSING 8

Fig. 3. Facial feature points we tracked.

agree presently that there are ten basic emotions, most current research in facial expression

recognition mainly focuses on six major emotions, partially because they are the most basic,

and culture and ethnically independent expressions and partially because most current facial

expression databases provide the six emotion labels. Given the measurement sequences, all

three level facial activities are estimated simultaneously through a probabilistic inference via

DBN (section. IV-C). And the optimal states are tracked by maximizing this posterior:

E⋆
t , AU

⋆
t , X

⋆
t = argmaxEt,AUt,Xt

P (Et, AUt, Xt|MAU1:t,MX1:t) (3)

B. Modeling the Relationships between Facial Features and AUs

In this work, we will track 26 facial feature points as shown in Fig. 3 and recognize 15

AUs, i.e., AU1 2 4 5 6 7 9 12 15 17 23 24 25 26 27 as summarized in Table I. The selection

of AUs to recognize is mainly based on the AUs occurrence frequency, their importance to

characterize the 6 expression, and the amount annotation available. The 15 AUs we propose to

recognize are all most commonly occurring AUs, and they are primary and crucial to describe

the six basic expressions. They are also widely annotated. Though we only investigate 15

AUs in this paper, the proposed framework is not restricted to recognizing these AUs, given

adequate training data set. Facial action units control the movement of face component

and therefore, control the movement of facial feature points. For instance, activating AU27

(mouth stretch) results in a widely open mouth; and activating AU4 (brow lowerer) makes

the eyebrows lower and pushed together. At the same time, the deformation of facial feature

points reflects the action of AUs. Therefore, we could directly connect the related AUs to

the corresponding facial feature points around each facial component to represent the casual

relationships between them. Take Mouth for example, we use a continuous node XMouth to

represent 8 facial points around mouth, and link AUs that control mouth movement to this
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TABLE I

A LIST OF AUS AND THEIR INTERPRETATIONS

AU1 AU2 AU4 AU5 AU6

Inner brow raiser Outer brow raiser Brow Lowerer Upper lid raiser Cheek raiser

AU7 AU9 AU12 AU15 AU17

Lid tigherner Nose wrinkler Lip corner puller Lip corner depressor Chin raiser

AU23 AU24 AU25 AU26 AU27

Lip tigherner Lip presser Lip part Jaw Drop Mouth stretch

AU1 AU2 AU4

AU5 AU6 AU7

AU

12

AU

15

AU9

AU

17

AU

23

AU

24

AU

25

AU

26

CB CE
CN

CM

XEyerow XEye XNose XMouth

MEyerow MEye MNose
MMouth

AU

27

Fig. 4. (a) Modeling the relationships between facial feature points and AUs (CB/E/N/M are the intermediate nodes;

XEyebrow/Eye/Nose/Mouth are the facial points nodes around each face component and MEyebrow/Eye/Nose/Mouth are the

corresponding measurement nodes).

node. However, directly connecting all related AUs to one facial component would result in

too many AU combinations, most of which rarely occur in daily life. For example, there

are eight AUs controlling mouth movement and they collectively produce 28 potential AU

combinations. But through the analysis of the database, there are only eight common AU or

AU combinations for the mouth. Thus, only a set of common AU or AU combination, which

produce significant facial actions, is sufficient to control the face component movement. As

a result, we introduce an intermediate node, i.e., “C ′′
M to model the correlations among AUs

and to reduce the number of AU combination. Fig. 4 shows the modeling for the relationships

between facial feature points and AUs for each facial component.

Each AU node has two discrete states which represent the “presence/absence” states of the



SUBMIT TO IEEE TRANSACTIONS ON IMAGE PROCESSING 10

AU. The modeling of the semantic relationships among AUs will be discussed in the later

section. The intermediate nodes (i.e. “C ′′
B, “C ′′

E , “C ′′
N and “C ′′

M ) are discrete nodes, each mode

of which represents a specific AU/AU combination related to the face component. The Con-

ditional Probability Table (CPT) p(Ci|pa(Ci)) for each intermediate node Ci is set manually

based on the data analysis, where pa(Ci) represents the parents of node Ci. For instance, “C ′′
B

has five modes, each of which represents the presence of an AU or AU combination related to

the eyebrow movement. We assign the parameter P (CB = 0|AU1 = 0, AU2 = 0, AU4 = 0) = 0.9

to represent the eyebrow at the neutral state, whereas P (CB = 1|AU1 = 1, AU2 = 1, AU4 = 1) = 0.9

to represent that the eyebrow is entirely raised up.

The facial feature points nodes (i.e., XEyebrow, XEye, XNose and XMouth) have continuous

state and are represented by continuous shape vectors. Given the local AUs, the Conditional

Probability Distribution (CPD) of the facial feature points can be represented as a Gaussian

distribution, e.g., for mouth:

P (XMouth|CM = k) ∼ N(XMouth|µk,Σk) (4)

with the mean shape vector µk and covariance matrix Σk.

The facial feature point measurement nodes are continuous vector nodes that have the same

dimension as their parents. The CPD for the measurement are modeled as linear Gaussian,

i.e., for mouth:

P (MMouth|XMouth = x) ∼ N(MMouth|W · x+ µx,Σx) (5)

with the mean shape vector µx, regression matrix W , and covariance matrix Σx. These pa-

rameters can be learned from training data using expectation maximization (EM) estimation.

C. Modeling Semantic Relationships among AUs

In the above section, we modeled the relationships between facial feature points and AUs.

Detecting each AU statically and individually is difficult due to the variety, ambiguity, and

dynamic nature of facial actions, as well as the image uncertainty and individual differences.

Moreover, when AUs occur in a combination, they may be nonadditive: that is, the appear-

ance of an AU in a combination is different from its standalone appearance. Fortunately,

there are some inherent relationships among AUs, as described in the FACS manual [1].

We can summarize the relationships among AUs into two categories, i.e., co-occurrence

relationships and mutual exclusion relationships. The co-occurrence relationships characterize
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some groups of AUs, which usually appear together to show meaningful facial displays,

i.e., AU1+AU2+AU5+AU26+AU27 to show surprise expression; AU6+AU12+AU25 to show

happiness expression; AU1+AU4+AU15+AU17 to show sadness expression, etc.

On the other hand, based on the alternative rules provided in the FACS manual, some AUs

are mutually exclusive since “it may not be possible anatomically to do both AUs simultane-

ously” or “the logic of FACS precludes the scoring of both AUs” [1]. For instance, one can

not perform AU25 (lip part) with AU23 (lip tightener) or AU24 (lip pressor) simultaneously.

The rules provided in [1] are basic, generic and deterministic. They are not sufficient enough

to characterize all the dependencies among AUs, in particular some relationships that are

expression and database dependent. Hence, in this work, we propose to learn from the data

to capture additional relationships among AUs.

Tong et al. [26] employed a Bayesian network to model the co-occurrence and mutual

exclusion relationships among AUs, and achieved significant improvement for AU recognition

compared to image-driven methods. Following the work in [26], we also employ a Bayesian

network (BN) to model the dependencies among AUs. A BN is a directed acyclic graph

(DAG) that represents a joint probability distribution among a set of variables. In a BN, its

structure captures the dependency among variables, i.e., the dependency among AUs in this

work, and the dependency is characterized by a conditional probability table (CPT), i.e., θ,

for each node given its parents. Hence, we employ a structure learning algorithm to identify

a structure of the DAG, given the training data. The structure learning is to find a structure G

that maximizes a score function. In this work, we employ the Bayesian Information Criterion

(BIC) score function [41] which is defined as follows:

sD(G) = max
θ

logP (D|G, θ)− logM

2
DimG (6)

where the first term evaluates how well the network fits the data D; the second term is a

penalty relating to the complexity of the network; logP (D|G, θ) is the log-likelihood function

of parameters θ with respect to data D and structure G; M is the number of training data;

and DimG is the number of parameters.

Cassio et al. [13] developed a Bayesian Network structure learning algorithm which is not

dependent on the initial structure and guarantee a global optimality with respect to BIC score.

In this work, we employ the structure learning method [13] to learn the dependencies among

AUs. To simplify the model, we use the constraints that each node has at most two parents.

The learned structure is shown in Fig. 5.
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Fig. 5. The learned structure from training data.
TABLE II

GROUPING AUS ACCORDING TO DIFFERENT EXPRESSIONS.

Emotion Corresponding AUs

Surprise AU5, AU26, AU27, AU1+AU2

Happiness AU6, AU12, AU25

Sadness AU1, AU4, AU15, AU17

Disgust AU9, AU17

Anger AU4, AU5, AU7, AU23, AU24

Fear AU4, AU1+AU5, AU5+AU7

D. Modeling the Relationships between AUs and Expression

So far, we have modeled the relationships between AUs and facial feature points, and the

semantic relationships among AUs. In this section, we will add Expression node at the

top level of the model. Expression represents the global face movement and it is generally

believed that the six basic expressions (happiness, sadness, anger, disgust, fear and surprise)

can be described linguistically using culture and ethnically independent AUs, i.e., activating

AU6+AU12+AU25 produces happiness expression, as shown in Fig. 6(a).

We group AUs according to different expressions as listed in Table II. But inferring expres-

sion from AUs is not simply to transfer the combination of several AUs directly to certain

expression. Naturally, combining AUs belonging to the same category increases the degree

of belief in classifying to that category, as shown in Fig. 6(a) (the combination of AU6

and AU12 increases the likelihood of classifying as happiness). However, combining AUs

across different categories may result in the following situations: First, an AU combination

belonging to a different facial expression, i.e., when AU1 occurs alone, it indicates a sadness,
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(a) (b) (c)

Fig. 6. Examples of AU combinations: (a) AU12+AU6 (two AUs from the same category) enhances classification to

happiness, (b) AU1+AU5 (two AUs from different categories) becomes a fear, and (c) AU26+AU1 (two AUs from different

categories) increases ambiguity between a surprise and a fear.

and when AU5 occurs alone, it indicates a surprise, however, the combination of AU1 and

AU5 increases the probability of fear as shown in Fig. 6(b); Second, increasing ambiguity,

i.e., when AU26 (jaw drop), an AU for surprise, combines with AU1, an AU for sadness, the

degree of belief in surprise is reduced and the ambiguity of classification may be increased

as illustrated in Fig. 6(c).

These relationships and uncertainties are systematically represented by our final facial

activity model as shown in Fig. 8. At the top level of the final model, we introduce six expres-

sion nodes, (i.e., Surp, Sad, Ang, Hap, Dis and Fea), which have binary states to represent

“absence/presence” of each expression. We link each expression node to the corresponding

AUs as listed in Table II. The parameter of each expression node is the prior distribution, i.e.,

P (Exp), and the self dynamic denpendency, i.e., P (Expt|Expt−1). Expressions are inferred

from their relationships with AUs and reasoning over time. In principle, our approach allows

a facial expression to be a probabilistic combination of any relevant facial AUs.

IV. MODELING THE DYNAMIC RELATIONSHIPS

A. Constructing dynamic structure

So far, we have constructed a Bayesian network to represent the static relationships among

facial feature points, AUs and expressions. In this section, we extend it to a dynamic Bayesian

network by adding dynamic links.

In general, a DBN is made up of interconnected time slices of static BNs, and the relation-

ships between two neighboring time slices are modeled by an HMM such that variables at time

t are influenced by other variables at time t, as well as by the corresponding random variables

at time t−1 only. The exact time difference between t− 1 and t is determined by the temporal
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Fig. 7. An example image sequence displays the unsynchronized AUs evolutions in a smile (adapted from [45]).

resolution of image sequence, i.e., the frame rate of the recorded videos, which is critical for

setting the temporal relationships. For instance, for each AU, its temporal evolution consists

of a complete temporal segment lasting from 1/4 of a second, i.e., a blink, to several minutes,

i.e., a jaw clench, as described in [22]. Hence, if we choose a small time duration, i.e., a

single frame, we may capture many irrelevant events, whereas if we choose many frames as

a duration, the dynamic relationships may not be captured. For instance, Fig. 7 shows how a

smile is developed in an image sequence: first, AU12 is contracted at the 4th frame to express

a slight smile, and then, AU6 and AU25 are triggered at the 5th and 6th frame respectively

to enhance the happiness. As the intensity of happiness increases, AU12 first reaches its

highest intensity level, and then, AU6 and AU25 reach their apexes, respectively. Based on

this understanding and the analysis of the database, as well as the temporal characteristics

of the AUs we intend to recognize, we empirically set the time duration as 1/6 second in

this work, and link AU2 and AU12 at time t− 1 to AU5 and AU6 at time t, respectively to

capture the second type dynamics.

In the proposed framework, we consider two types of conditional dependencies for variables

at two adjacent time slices. The first type, i.e., an arc from AUi node at time t − 1 to that

node at time t, depicts how a single variable develops over time. For the expression and the

facial feature point nodes, we only consider this type dynamic. The second of type, i.e., an

arc from AUi at time t−1 to AUj(j ̸= i) at time t, depicts how AUi at the previous time step

affects AUj(j ̸= i) at the current time step. We consider this type dynamic for AU nodes.

The dynamic dependencies among AUs are especially important for understanding sponta-

neous expression. For example, K. Schmidt et al. [36] found that certain action units usually

closely follow the appearance of AU12 in smile expression. For 88% of the smile data they

collect, the appearance of AU12 was either simultaneously with or closely followed by one

or more associated action units, and for these smiles with multiple action units, AU6 was the
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Fig. 8. The complete DBN model for simultaneous facial activity recognition. The shaded node indicates the observation

for the connected hidden node. The self-arrow at the hidden node represents its temporal evolution from previous time slice

to the current time slice. The link from AUi at time t − 1 to AUj(j ̸= i) at time t indicates the dynamic dependency

between different AUs.

first action unit to follow AU12 in 47%. Similar findings are found by Tong et al [20]. Fig. 8

gives the whole picture of the dynamic BN, including the shaded visual measurement nodes.

For presentation clarity, we use the self-arrows to indicate the first type of temporal links as

described above.

B. DBN Parameters Learning

Given the DBN structure and the definition of the CPDs, we need to learn the parameters

from training data. In this learning process, we manually labeled the expressions, AUs and

facial feature points for some sequences collected from the extended Cohn and Kanade

database [47] frame by frame. Based on the conditional independencies encoded in DBN,

we can learn the parameters individually for each local structure. In this way, the quantity of

training data required is much smaller than for a larger network structure. For instance, for

the AU and expression model, since all nodes are discrete and let θijk indicates a probability

parameter,

θijk = p(xk
i |paj(Xi)) (7)

where i ranges over all the variables (nodes in the BN), j ranges over all the possible parent

instantiations for variable Xi, and k ranges over all the instantiations for Xi itself. Therefore,
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xk
i represents the kth state of variable Xi, and paj(Xi) is the jth configuration of the parent

nodes of Xi. The “fitness” of parameters θ and training data D is quantified by the log

likelihood function log(p(D|θ)), denoted as LD(θ):

LD(θ) = log
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk (8)

where nijk is the count for the case that node Xi has the state k, with the state configuration

j for its parent nodes. Since we have complete training data, the learning process can be

described as a constrained optimization problem as follows:

argmax
θ

LD(θ) s.b. gij(θ) =

ri∑
k=1

θijk − 1 = 0 (9)

Solving the above equations, we can get θijk =
nijk∑
k nijk

.

For the facial feature point model, i.e., the Mouth model, we need to learn a mean shape

vector and a covariance matrix for each state of the combination node. Since the combination

node is hidden, in this work, we employ expectation maximization (EM) estimation to learn

these Gaussian parameters. To evaluate the quantity of training data needed for learning the

facial activity model, we perform a sensitivity study of model learning on different amount of

training data. For this purpose, the Kullback-Leibler (KL) divergences of the parameters are

computed versus the number of training samples. The convergence behaviors for local models,

i.e., AUs model, “Eyebrow” model, “Eye” model, “Nose” model, and “Mouth” model, are

shown in Fig. 9.

In Fig. 9 we can observe that, when the amount of training data is larger than 3000, all

local models converge and have similar K-L divergences. To demonstrate the learning effect,

we draw 200 samples from the learned CPDs of the “Mouth” node: P (XMouth|CM) as shown

in Fig. 10 (The XMouth node in our model is the shape difference. For clarity, we show the

distribution of XMouth by adding a constant neutral shape: P (XMouth + C|CM), where C

is a constant neutral shape). From Fig. 10 we can observe that, AUs do can provide prior

distribution for facial feature points, since given different AUs, facial feature point samples

drawn from the learnt distribution can reflect the mouth movement shape.

C. DBN Inference

In the above sections, we have learned the DBN model to represent the three level facial

activities. During tracking and recognition, this prior DBN model is combined with the
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Fig. 9. The KL divergences of the model parameters versus the training data size for the (a) AU model, (b) “Eyebrow”

model, (c) “Eye” model, (d) “Nose” model, (e) and “Mouth” model respectively.

likelihood of the measurement to estimate the posterior probability. Therefore, the estimation

contains two steps in our framework. First, we employ various computer vision techniques

to acquire various measurements. For AUs, we employ a technique based on the AdaBoost

classifier and Gabor features [44] to obtain AU measurements. For facial feature points, we

first use the detection method [8] to obtain the facial feature points on the neutral face (the

subject is asked to perform neutral face in the first frame of the sequence). Then the feature

points are tracked using the state-of-the-art facial feature tracker [8], which is based on Gabor
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Fig. 10. The distribution of mouth feature points given different AUs. (a) P (XMouth|AU12 = 1) (b) P (XMouth|AU12 =

1, AU25 = 1) (c) P (XMouht|AU25 = 1, AU27 = 1). The red shape indicates the mouth neutral shape.

wavelet matching and active shape model. In this work, we infer expressions directly from the

corresponding AUs, which means we do not employ any image-driven method to obtain the

expression measurements first. Without measurement, the hidden expression nodes can still

help improve the recognition and tracking performance because of the built-in interactions,

as well as the temporal relationships among levels.

Once the image measurements are obtained, we can use them as the evidence to estimate

the true state of hidden nodes by maximizing the posterior probability of the hidden nodes as

Eq. 3. Let Et, AU t
1:N , X t

Feature (Feature represents Eyebrow,Eye,Nose,Mouth), represent

the nodes for Expression, N target AUs and facial feature points at time t. Given the available

evidence until time t: MAU1:t
1:N , M1:t

XFeature
, the probability

p(Et, AU t
1:N , X

t
Feature|MAU1:t

1:N ,M
1:t
XFeature

) can be factorized and computed via the facial

action model by performing the DBN updating process as follows [43]:

1) Prediction: Given the estimated probability distribution

p(Et−1, AU t−1
1:N , X t−1

Feature|MAU1:t−1
1:N ,M1:t−1

XFeature
), which is already inferred at time step t− 1,

we could calculate the predicted probability p(Et, AU t
1:N , X

t
Feature|MAU1:t−1

1:N ,M1:t−1
XFeature

)

by using the standard BN inference algorithm, such as a version of junction tree algo-

rithm [54].

2) Rollup: Remove time slice t− 1 and use the prediction

p(Et, AU t
1:N , X

t
Feature|MAU1:t−1

1:N ,M1:t−1
XFeature

) for the t slice as the new prior.

3) Estimation: Add new observations at time t and calculate the probability distribution

over the current state p(Et, AU t
1:N , X

t
Feature|MAU1:t

1:N ,M
1:t
XFeature

). Finally, add the slice

for t+ 1.
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This way, we obtain the posterior probability of each hidden node, given the observed

measurements. Because of the recursive nature of the inference process, it can be implemented

rather efficiently.

V. EXPERIMENTS

The proposed model is evaluated on two databases, i.e., the extended Cohn-Kanade (CK+)

database [47], and the M&M Initiative (MMI) facial expression database [55]. CK+ database

increases the original Cohn-Kanade (CK) database [45] by 22% in the number of sequence,

and by 27% in the number of subjects. One significant benefit of CK+ database compared to

CK database is that the emotion labels on CK+ database are revised, while before the emotion

labels were those that the actors have been told to express. CK and CK+ databases have been

widely used for evaluating facial activity recognition system. Using CK+ database has several

advantages: this database demonstrates diversity over the subjects and it involves multiple-AU

expressions. The results on the CK+ database will be used to compare with other published

methods. Besides, in order to evaluate the generalization ability of the proposed model, we

train the model on CK+ database and test on the M&M Initiative (MMI) facial expression

database collected by Pantic et al. [55]. The MMI facial expression database is recorded in

true color with a frame rate of 24 fps. The advantage of using this database is that it contains

a large number of videos that display facial expressions with a neutral-apex-neutral evolution.

A. Evaluation on extended Cohn-Kanade Database

We collect 309 sequences that contain the major six expressions from the CK+ database, 227

sequences of which are labeled frame by frame in this work. We adopt leave-one-subject-

out cross validation, and for each iteration, while the semantic dependencies of the facial

action model are trained with all labeled training images, the dynamic dependencies are

learnt only using the sequences containing frame by frame labels. Given the AU and facial

feature point measurements, the proposed model recognizes all three level facial activities

simultaneously through a probabilistic inference. In the following, we are going to demonstrate

the performance for each level individually.

1) Facial feature tracking: We tracked the facial feature point measurements through an

active shape model (ASM) based approach [8], which first searches each facial feature point

locally and then constrains the feature point positions based on the ASM model, so that the

facial feature points can only deform in specific ways found in the training data. The ASM
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TABLE III

ERRORS OF TRACKING FACIAL FEATURE POINTS BY USING BASELINE METHOD [8], AAM MODEL [47] AND THE

PROPOSED MODEL, RESPECTIVELY. (FOR AAM MODEL, WE SELECTED 20 POINTS FROM [47] THAT WE ALSO TRACKED

IN THIS WORK.)

Eyebrow Eye Nose Mouth Total

Baseline method [8] 3.75 2.43 3.10 3.97 3.31

AAM model [47] 3.43 2.36 2.76 3.65 3.05

Proposed model 2.98 1.53 2.43 3.45 2.59

model is trained using 500 keyframes selected from the training data, which are 8-bit gray

images with 640× 480 image resolution. All the 26 facial feature point positions are manually

labeled in each training image. For ASM analysis, the principal orthogonal modes in the shape

model stand for 95% of the shape variation. Since the face region is normalized and scaled

based on the detected eye positions, the tracking model is invariant to scale change. The

trained ASM model performs well when the expression changes slowly and not significantly,

but may fail when there is a large and sudden expression change. At the same time, our

model can detect AUs accurately, especially when there is a large expression change. The

accurately detected AUs provide a prior distribution for the facial feature points, which help

infer the true point position.

To evaluate the performance of the tracking method, the distance error metric is defined

per frame as: ||pi,j−p̂i,j ||2
DI(j)

, where DI(j) is the interocular distance measured at frame j, pi,j is

the tracked position of point i, and p̂i,j is the labeled position. By modeling the interaction

between facial feature points and AUs, our model reduces the average facial feature points

tracking error from 3.31 percent for the baseline method to 2.59 percent for the proposed

model, a relative improvement of 21.75 percent. We also make a comparison with the active

appearance model (AAM). Lucey et al., [47] provided AAM model tracking results on the

CK+ database, and we selected 20 points from [47] that we also tracked for the same subjects

in this work. The comparison is listed in Table III. From Table III we can see that, AAM

model outperforms the ASM based tracking method [8], mainly because that both shape and

texture are combined with PCA to one AAM model, and the proposed model still achieves

the best performance.

To further demonstrate the tracking effectiveness of the proposed model, we downsampled

the frequency rate of some sequences from the CK+ database so that the expression and

facial feature point positions can change significantly in two consecutive frames. In this way,



SUBMIT TO IEEE TRANSACTIONS ON IMAGE PROCESSING 21

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

Frame Index

T
ra

c
k
in

g
 e

rr
o

r%

 

 

Baseline method

Proposed Model

Frame # 10 Frame # 11

Fig. 11. The tracking error for 26 facial feature points of baseline method [8] and the proposed model.

it is more challenging for the traditional tracking model to track the facial feature points.

The average tracking error of 26 facial feature points for a sequence is shown in Fig. 11.

From Fig. 11 we can see that, the performances of the baseline method and the proposed

model are similar for most frames, except the frames after frame 11. We show the 10th

and the 11th frames in the figure, and we can see that the baseline tracking method fails

because it is based on local search, and it cannot track the sudden lips part movement in

the 11th frame because of downsampling. At the same time, detected AU measurements

with high confidence, i.e., AU12+AU25, provide a prior distribution for the mouth shape,

i.e., the parameter of the model P (XMouth|AU12 = 1, AU25 = 1) follows a multi-gaussian

distribution as shown in Fig. 10(b). Hence, the proposed model outperforms the baseline

method for facial feature tracking when there is a sudden expression change. To clearly

illustrate the top-down information flow from AUs to facial feature points, we initialize all

AU measurement nodes with ground truth, and then infer the facial feature points. Through

this way, we further reduce the average tracking error to 2.46 percent. Therefore, we can

conclude that the top-down information flow from AUs to facial feature points can indeed

help refine the tracking measurements.

2) Facial action unit recognition: Fig. 12 shows the AU recognition performance for

generalization to novel subjects on the CK+ database by using AdaBoost classifier alone and
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Fig. 12. Comparison of AU recognition results on the novel subjects on CK+ database by using AdaBoost classifier and

using the proposed model, respectively.
TABLE IV

MODEL PARAMETERS OF AU15 NODE AND AU23 NODE (IGNORING THE DYNAMIC DEPENDENCY).

Parameters of AU15 Parameters of AU23

P (AU15 = 1|AU7 = 1, AU17 = 1) = 0.0989 P (AU23 = 1|AU15 = 1, AU24 = 1) = 0.0883

P (AU15 = 1|AU7 = 1, AU17 = 0) = 0.0002 P (AU23 = 1|AU15 = 1, AU24 = 0) = 0.0416

P (AU15 = 1|AU7 = 0, AU17 = 1) = 0.7096 P (AU23 = 1|AU15 = 0, AU24 = 1) = 0.9309

P (AU15 = 1|AU7 = 1, AU17 = 1) = 0.0025 P (AU23 = 1|AU15 = 1, AU24 = 1) = 0.0052

using the proposed model, respectively. From Fig. 12 we can see that, the proposed system

outperforms the AdaBoost classifier consistently. The average F1 measure (a weighted mean

of the precision and recall) for all target AUs increases from 69.94 percent for AdaBoost

to 76.36 percent for the proposed model. We made one tailed t-test (right-tail test) on

the average F1 measure from the proposed model and the AdaBoost, and the p-value is

3.003× 10−11, which means the predicted results are statistically better than the measure-

ments. The improvement mainly comes from the AUs that are hard to detect but have strong

relationships with other AUs. To clearly demonstrate this point, we list the parameters of

AU15 node and AU23 node (ignoring the dynamic dependency) respectively in Table IV. From

Table IV, we can see that, when AU7 is absent the co-occurrence of AU15 and AU17 is high,

i.e., P (AU15 = 1|AU7 = 0, AU17 = 1) = 0.7096, and when AU15 does not occur the co-

occurrence of AU23 and AU24 is high, i.e., P (AU23 = 1|AU15 = 0, AU24 = 1) = 0.9309).

By encoding such relationships in the DBN, the F1 measure of AU15 is increased from 61.54

percent to 72.07 percent; the F1 measure of AU17 is increased from 72.12 percent to 81.08

percent; the F1 measure of AU23 increases from 40.93 percent to 54.98 percent, and that

of AU24 increases from 47.96 percent to 61.03 percent. Besides the semantic relationships
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TABLE V

COMPARISON OF OUR WORK WITH SOME PREVIOUS WORKS.

Author features classification AUs CR F1

Bartlett et al. 2005 [14] Gabor filters AdaBoost+SVM 17 94.8

Chang 2006 [37] manifold embed Bayesian 23 89.4

Whitehill and Omlin 2006 [38] Haar wavelets AdaBoost 11 92.4

Lucey et al. 2007 [39] AAM SVM 15 95.5

Pantic et al. 2006 [22] tracked face points temporal rule-based 21 93.3

Valstar et al. 2006 [20] tracked face points AdaBoost+SVM 15 90.2 72.9

Tong el al. 2007 [26] Gabor filters AdaBoost+DBN 14 93.3

Koelstra el al. 2010 [46] FFD GentleBoost+HMM 18 89.8 72.1

Valstar & Pantic 2012 [49] tracked facial points GentleSVM+HMM 22 91.7 59.6

This work Gabor filter, face points AdaBoost+DBN 15 94.05 76.36

AUs = No. of AUs recognized, CR = Classification Rate, F1 = F1 measure

among AUs, the interactions between AUs and facial feature points also contribute to the AU

recognition. For instance, we initialize all facial feature measurements with ground truth, and

then infer the AU nodes. In this way, the average F1 measure of AUs is further improved to

77.03 percent.

Lots of works about AUs recognition are evaluated on CK, or CK+ databases. Table V

shows the comparison of the proposed model with some earlier works. Our results in terms of

classification rate are better than most previous works. Bartlett et al. [14] and Lucey et al. [39]

all achieve high AU recognition rate, but these two approaches are all image-based, which

usually evaluate only on the initial and peak frames while our method is sequence based

and we consider the whole sequence, in the middle of which AUs with low intensity are

much more difficult to recognize. In addition, the classification rate is often less informative,

especially when the data is unbalanced. So we also report our results in terms of F1 measure,

which is a more comprehensive metric. From Table V we can see that, the proposed method

outperforms all the three earlier works who also reported their results in F1 measure. Since

the works in [49] and [46] recognize more AUs, we also make a deep comparison on each

individual AU as shown in Table VI. On average, our method achieves better or similar

results, but it is interesting that for AU15 and AU24, our results are much better than the

work in [49] and [20]. This is because the activations of AU15 and AU24 involve changes

in facial texture without large displacements of facial feature points, and Valstar & Pantic

employed geometric feature in [49] and [20]. Hence, they failed at AU15 and AU24. The

proposed approach also outperforms [49] [20] at AU9, the occurrence of which also produces
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TABLE VI

COMPARISON WITH SOME PREVIOUS WORKS ON INDIVIDUAL AUS.

AUs F1 F1[49] F1[46] F1[20]

1 77.93 82.6 86.89 87.6

2 80.11 83.3 90.00 94.0

4 77.48 63.0 73.13 87.4

5 63.55 59.6 80.00 78.3

6 77.11 80.0 80.00 88.0

7 62.41 29.0 46.75 76.9

9 78.84 57.3 77.27 76.4

12 89.99 83.6 83.72 92.1

15 70.27 36.1 70.27 30.0

17 81.08 76.29

24 60.13 44.0 63.16 14.3

25 88.19 74.8 95.60 95.3

27 95.52 85.4 87.50 89.3

Avg 77.26 61.59 77.74 75.80

F1 = F1 measure of our model

F1 [49] = F1 Valstar & Pantic 2012[49]

F1 [46] = F1 Koelstra el al. 2010[46]

F1 [20] = F1 Valstar & Pantic 2006[20]

less displacement change. P. Lucey et al. [47] provided the AU recognition results on the

peak frames on the CK+ database, and for the same 15 AUs as recognized in this work, [47]

achieves an average area underneath the ROC curve of 89.41% for the similarity normalized

shape features (SPTS), 91.27% for the canonical normalized appearance (CAPP) features and

93.92% for SPTS+CAPP features. The proposed model achieves an average area underneath

the ROC curve of 93.33% for the peak frames, which is better or similar as that in [47].

3) Expression recognition: Besides more accurate facial feature tracking and AU recogni-

tion, our model recognizes six global expressions with an average recognition rate of 87.43%.

The result is not as good as the-state-of-the-art expression recognition methods, i.e., [32] [40].

This is mainly because that, we didn’t employ any image-driven method specifically to extract

the expression measurement, and its state is directly inferred from facial feature point and

AU measurements, and from their relationships. Table VII shows the confusion matrix for six

expressions recognition on the CK+ data set. From Table VII we can see that, the recognition

rate for surprise and happiness are high while that of anger is low. This is mainly because

that we infer expressions from the corresponding AUs, and AU1, AU2, AU27 for surprise
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TABLE VII

EXPRESSION RECOGNITION CONFUSION MATRIX OF THE PROPOSED MODEL.

Surp Hap Dis Fear Sad Ang

Surp 96.88% 0% 0% 3.12% 0% 0%

Hap 0% 97.08% 0% 0% 2.92% 0%

Dis 0% 0% 91.02% 0% 8.98% 0%

Fear 20.00% 0% 0% 80.00% 0% 0%

Sad 0% 0% 0% 0% 80.00% 20.00%

Ang 0% 0% 8.33% 0% 25.00% 66.67%

Average Recognition Rate: 87.43%

Surp = Surprise, Hap = Happiness, Dis = Disgust

Sad = Sadness, Ang = Anger

and AU6, AU12, AU25 for happiness are well detected. Hence, we can recognize these two

expressions with high accuracy. At the same time, AUs for anger, i.e., AU5, AU7, AU23 and

AU24, are all not detected with such high accuracy, so we only achieve a recognition rate

of 66.67% for anger. Hence, we can conclude that the accuracy of the AU detection affects

the expression recognition significantly in this model. To further demonstrate this point, we

initialize all AU nodes with ground truth, and then infer the expression. We achieve an average

expression recognition rate of 95.15% in this case, which is similar as the state of the art

method in [32](95.1%) and [40](94.48%).

Besides, our approach allows a probabilistic output for six expressions, which represents

the confidence of the classification and can be further transferred into the relative intensity

level. Fig. 12 shows the expression recognition results of a sequence from CK+ database, in

which the subject is performing surprise expression.

B. Generalization Validation across Different Databases

In order to evaluate the generalization ability of the proposed model, we train the model

on the extended Cohn-Kanade database and test on the MMI facial expression database [55].

Since most of the image sequences on the MMI database have only single AU active, we

only choose 54 sequences containing two or more target AUs from 11 different subjects. The

proposed model achieves an average expression recognition rate of 82.4%, and reduce the

average tracking error from 3.96 percent for the baseline method [8] to 3.51 percent for the

proposed model, an relative improvement of 11.36%. Fig. 14 shows the AU recognition results

of using AdaBoost classifier alone and using the DBN facial action model, respectively, on the
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Fig. 13. Expression recognition results on a sequence. (a) A sequence on CK+ database and the subject is performing

surprise expression. (b) The corresponding recognition results of surprise. (c) The corresponding recognition results for other

five expressions.

MMI database. With the use of the facial action model, we improve the average F1 measure

of AU recognition from 61.97 percent for the AdaBoost, to 66.52 percent for the proposed

model. The most current works by Vasltar and Pantic. [49] and Koelstra et al. [46], which

represent the state of the art methods for AU recognition, reported an average F1 measure

of 53.79 percent and 65.70 percent respectively on the MMI database1. The proposed model

achieves better AU recognition performance than the state of the art methods [49] [46] on

novel subjects from a different database, which demonstrates the generalization ability of our

model.

The enhancement of the our approach mainly comes from combing the facial action model

with image driven methods. Specially, the erroneous image measurement could be compen-

1For work [49], we calculate the average F1 measure of the same 13 AUs as recognized in this work, while for work [46],

we calculate the average F1 measure of the same 15 AUs as recognized in this work.
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Fig. 14. AU recognition results on MMI facial expression database by using AdaBoost classifier and using the proposed

model, respectively. The model is trained on CK+ database and tested on MMI database.

sated by the semantic and dynamic relationships encoded in the DBN. For instance, the

recognition of AU7 is difficult since the contraction of AU7 produces a similar facial appear-

ance changes as that caused by AU6. However, AU7 occurs often with AU4, which could

be recognized easily. By encoding such co-occurrence relationship in the DBN model, the

F1 measure of AU7 is increased greatly (from 61.22 percent to 70.82 percent). Similarly, by

modeling the co-occurrence relationships of AU23 and AU24, the F1 measure of AU23 is

increased from 58.72 percent to 76.34 percent, and that of AU24 is increased from 75.25

percent to 83.02 percent.

VI. CONCLUSION

In this paper, we proposed a hierarchical framework based on Dynamic Bayesian Network

for simultaneous facial feature tracking and facial expression recognition. By systematically

representing, and modeling inter relationships among different levels of facial activities, as

well as the temporal evolution information, the proposed model achieved significant im-

provement for both facial feature tracking and AU recognition, compared to state of the art

methods. For six basic expressions recognition, our result is not as good as other state of

the art methods, since we did not use any measurement specifically for expression, and the

global expression is directly inferred from AU and facial feature point measurements, and from

their relationships. The improvements for facial feature points and AUs come mainly from

combining the facial action model with the image measurements. Specifically, the erroneous
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facial feature measurements and the AU measurements can be compensated by the model’s

build-in relationship among different levels of facial activities, and the build-in temporal

relationships. Since our model systematically captures and combines the prior knowledge

with the image measurements, with improved image driven computer vision technology, our

system may achieve better results with little changes to the model.

In this paper, we evaluate our model on posed expression databases from frontal view

images. In the future work, we plan to introduce the rigid head movements, i.e., head pose,

into the model to handle multi view faces. In addition, modeling the temporal phases of each

AU, which is important for understanding the spontaneous expression, is another interesting

direction to pursue.
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