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Abstract

The accuracy of face alignment affects the performance of
a face recognition system. Since face alignment is usually
conducted using eye positions, an accurate eye localization
algorithm is therefore essential for accurate face recogni-
tion. In this paper, we first study the impact of eye loca-
tions on face recognition accuracy, and then introduce an
automatic technique for eye detection. The performance of
our automatic eye detection technique is subsequently vali-
dated using FRGC 1.0 database. The validation shows that
our eye detector has an overall 94.5% eye detection rate,
with the detected eyes very close to the manually provided
eye positions. In addition, the face recognition performance
based on the automatic eye detection is shown to be compa-
rable to that of using manually given eye positions.

1 Introduction

An important issue in face recognition systems is face align-
ment. Face alignment involves spatially scaling and rotating
a face image to match with face images in the database. It
is already shown that the face alignment has a large impact
on recognition accuracy [17, 15]. Currently, face alignment
is usually performed with the use of eye positions. For most
face recognition methods, eye positions are manually given.
But for a real world application of face recognition, manu-
ally detecting eye positions is apparently not realistic. An
automatic eye detection algorithm is therefore needed for a
fully automatic face recognition system.

In this paper, we first propose a new real time automatic
eye detection method. Our eye detection method is then
validated using FRGC database [16]. The rest of this paper
is organized as follows: the impact of eye location on face
recognition is discussed in Section 2. The related work on
automatic eye detection is reviewed in Section 3. We pro-
pose an accurate eye localization algorithm at Section 4. In
Section 5, we show the experiment results of validating our
eye localization for face recognition on the FRGC database.
The paper concludes in Section 6.

2 Eye Detection Error on Face
Recognition

To observe how the recognition performance varies accord-
ing to eye localization error, the eye positions of the ground
truth are artificially perturbed with random noise. Face
recognition is then performed using the perturbed eye po-
sitions. The impact of eye detection on recognition accu-
racy is illustrated in Figure 1, where face images are aligned
based on perturbed eye positions. The eye localization er-
ror in Figure 1 is the pixel error normalized by the distance
between two eyes. Given a normalized error, the random
noise is uniformly distributed at a circle in 2D space. The
data from FRGC 1.0 and PCA baseline algorithm are used
for this experiment [16].

Figure 1 clearly shows that eye location errors signifi-
cantly affect the recognition accuracy. For example, about
1% (about 3 pixels for FRGC image or 0.5 pixel if the inter-
ocular distance is 50 pixels) eye location error reduces the
face recognition accuracy by over 10%. When the error is
about 5%, the face recognition accuracy reduces by 50%.
These numbers, of course, vary, depending on the recogni-
tion methods. But still, they show the significant impact of
eye position error on face recognition.

Figure 1: Face recognition accuracy vs. eye localization
error in FRGC 1.0 experiments
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Similar conclusions have also been drawn by other re-
searchers. In [17], the face recognition algorithms with
automatic and manual alignment are evaluated. The face
recognition algorithms with manual eye coordinates are re-
ferred as “partially automatic algorithms” while “fully auto-
matic algorithms” automatically align face images. Exper-
iment results show that the partially automatic algorithms
always perform better than the fully automatic algorithms.

There are two basic strategies to address the face align-
ment problem. One strategy is to improve the robustness of
face recognition algorithms to misalignment. The robust-
ness of a face recognition algorithm is evaluated by its per-
formance under misalignment[19]. [17] shows that EBGM
method, which is based on Gabor wavelets representation,
is more robust for fully automatic face alignment than PCA
method. It is also claimed that the warping is a necessary
step in face recognition to improve the robustness to impre-
cise alignment [15].

In this paper, we focus on another strategy, which tries to
improve eye localization accuracy for better face alignment.
We propose a new eye detection method and validate the
method using FRGC database.

3 Brief Review on Automatic Eye De-
tection

There are two purposes of eye detection. One is to detect
the existence of eyes, and another is to accurately locate
eye positions. Under most situations, the eye position is
measured with the pupil center.

Current eye detection methods can be divided into two
categories: active and passive eye detection [11]. The active
detection methods use special types of illumination. Under
IR illumination, pupils show physical properties which can
be utilized to localize eyes [9, 25]. The advantages of active
eye detection methods are that they are very accurate and
robust. The disadvantages are that they need special light-
ing sources and have more false detections with an outdoor
environment, where the outdoor illumination impacts the IR
illumination.

Passive methods directly detect eyes from images within
visual spectrum and normal illumination. Some early work
extracts distinct features from eyes localization. The fea-
tures include image gradients [13], projection [24], and tem-
plates [4, 12]. However, in these methods, heuristics and
postprocessing are usually necessary to remove false detec-
tions, and these features are sensitive to image noise. Be-
sides the above features, wavelets are shown to be able to
localize facial features [10, 23]. Huang and Wechsler pro-
pose to select optimal Wavelet packets and classify the eye
and non-eye with Radial Basis Functions (RBFs) [10]. Ga-
bor wavelets are robust to moderate illumination change,

and the similarity measurement based on Gabor wavelets is
sensitive to localization change so that they can be used to
detect fiducial points [23]. In [6], a two-layer Gabor wavelet
network (GWN) is proposed to localize facial points from
coarse to fine. The first layer localizes face region while
the second layer further refines the facial points. The ex-
periments on FERET show that about 95% eyes are located
with a distance error smaller than 3 pixels. However, no
face recognition accuracy is reported with this method.

Some passive methods consider eye detection as a typi-
cal two-class pattern recognition problem. In [14], eye de-
tectors are trained with the rectangle Haar features and Ad-
aBoost algorithm to detect eyes in images. In [5], the crit-
ical features are selected from both rectangle and center-
surrounded Haar feature sets. GentleBoost is applied to
construct a final eye detector. The same algorithm to train
a frontal face detector. After a frontal face is detected, eyes
are located inside the face region.

4 Our Eye Localization Algorithm

It is shown that applying Haar wavelet features in AdaBoost
provides excellent computational efficiency with compara-
ble accuracy with other methods for face detection [20]. A
disadvantage of Haar features is their limited discriminant
capability. Although the Haar features vary with different
patterns, sizes and positions, they can only represent the
regular rectangular shapes. However, for eye detection, the
most distinguishing feature is the pupil which has a round
shape.

To better represent eyes, we propose to statistically learn
discriminate features to characterize eye patterns. Based
on the distribution of discriminant features, we propose to
learn probabilistic classifiers to separate eyes and non-eyes.
Multiple classifiers are then combined in AdaBoost to form
a robust and accurate eye detector. Our algorithm is briefly
explained at the following paragraphs.

4.1 Discriminant Features for Eye Detection

The notations used in this paper are explained here. A train-
ing sample is denoted as (x, gx), where x is image intensity
data, and gx ∈ {Ω1, Ω2} is the sample label. In this paper,
Ω1 = 1 represents the eye while Ω2 = −1 represents the
non-eye. Each training sample (x, gx) is associated with a
weight wx.

One criteria to extract a “good” feature for pattern classi-
fication is that the feature F (x) can minimize the estimated
Bayes error JF :

JF =
∫

(1−max
i

[p(Ωi|F (x))])p(x)dx (1)
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It is shown that Fisher discriminant analysis (FDA) is equiv-
alent to Bayesian classifier if assuming Gaussian distribu-
tion and equivalent priors and covariance matrix for each
class. FDA extracts the feature z = AT x by maximizing
the ratio J(A) of between-class covariance Sb and within-
class covariance Sw (2).

J(A) =
||AT SbA||
||AT SwA|| (2)

When the samples are associated with weights, the covari-
ance matrices have the form

Sw =
∑
x∈Ωi

wx(x− µi)(x− µi)T

Sb =
∑

i∈ {1,2}
P (Ωi)(µi − µ)(µi − µ)T (3)

where wx is the sample weight, µ is the mean of all samples,
and µi is the mean of i-th class. P (Ωi) =

∑
gx=Ωi

wx is
the weight of class i. The FDA feature can be obtained by
solving the generalized eigenvalue and eigenvectors prob-
lem.

One problem with FDA is that the single Gaussian as-
sumption is not valid due to significant appearance variance,
especially for non-eyes. Another problem is that the rank of
Sb in FDA is 1 for a two-class problem, which means that
only 1 effective feature can be extracted from FDA.

Nonparametric discriminant analysis (NDA) is proposed
to overcome these limitations [8]. In NDA, each sam-
ple has the extra-class nearest neighbors(NNs) xE

NN =
{x̂|gx̂ �= gx, ||x̂ − x|| < cE

x } and intra-class nearest neigh-
bors xI

NN = {x̂|gx̂ = gx, ||x̂ − x|| < cI
x} where the

thresholds cE
x and cI

x define the extra and intra neighbor-
hoods respectively. In calculation, the NNs are usually rep-
resented by their weighted average, i.e. xE = E[xE

NN ] and
xI = E[xI

NN ]. The nonparametric between-class scatter
matrix is defined as (4).

S′
b = Ex[γx(x− xE)(x− xE)T ] (4)

γx =
min(||x− xE ||α, ||x− xI ||α)
||x− xE ||α + ||x− xI ||α (5)

The NDA weight γx is introduced to emphasize those
samples near the class boundary, and α is the control para-
meter. The NDA weight is close to 0.5 if the sample is near
the class boundary, and tends to 0 if the sample is inside the
class.

NDA obtains a full-rank between-class scatter matrix
from local data so that it provides multiple features [8].
Also, the scatter matrix does not assume any distribution,
but only depends on the data near class boundary. We fur-
ther propose a recursive nonparametric discriminant feature

• Initialize sample weights.

• Repeat for t = 1, 2, ..., N :

1. Extract discriminant feature z = aT x with sam-
ple weights wx. Learn the sample distribution
from z.

2. Fit the classifier ht(x) = 1
2 log[P (Ω1|x)

P (Ω2|x) ] from
sample weights.

3. Update wx ← wx exp[−gxht(x)]
and re-normalize the weight.

• Output the combined classifiers sgn[
∑N

t=1 ht(x)].

Figure 2: Applying discriminant features in Real AdaBoost

(RNDA) to speed up the NDA for object detection. For
more detail, please refer to the work in [22].

4.2 Feature Selection and Classifier Con-
struction with AdaBoost

AdaBoost is very popular for object detection since its first
application in face detection [21]. Basically, AdaBoost se-
lects the critical features and train weak classifiers as well
as updates the sample weights [18]. As long as the weak
classifiers are slightly better than random guessing, the final
classifier will have much better accuracy after combining all
the weak classifiers together. The summary of AdaBoost al-
gorithm can be found in [18, 7].

The main task in the AdaBoost is the selection of features
to learn weak classifiers. We use more powerful discrim-
inant features instead of rectangular Haar features to im-
prove eye detection accuracy. Since the data weights in both
discriminant analysis and AdaBoost represent the same dis-
tribution, they can be associated together. The algorithm
applying discriminant features in AdaBoost is summarized
in Figure 2.

To train a robust eye detector, we have collected training
data from various sources. 500 pairs of eyes were collected
from FERET images [17]. More eye images were collected
from the web in order to include more variance from the
real world. The eyes were randomly rotated with small an-
gles. In total, thousands of eyes have been collected for
training. In application, only a left eye detector is trained
due to the symmetry of eyes. In detection, the images are
flipped to find the right eyes. The non-eye images were ran-
domly collected from background images. More non-eyes
were collected from the false detections. Those false de-
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(a)

(b)

Figure 3: Some eye and non-eye images used in training.
(a): some eye images. (b): typical non-eye training images

(a)

(b)

Figure 4: Localized eyes from face images. (a): face and
eye detection results. (b). enlarged eye localization results.

tections were fed back for training. Some typical eye and
non-eye images are shown in Figure 3.

To improve the eye detection speed, a cascade structure
is applied [20]. The first layer in the cascade only has two
features yet it can remove 80% of the non-eye samples. The
resulting eye detector classifier uses less than 100 features.

4.3 Eye Localization

Our eye localization method follows a hierarchical princi-
ple. Firstly a face is detected, then eyes are located inside
the detected face. The face detection method is also based
on AdaBoost, which is introduced in [22]. Geometric con-
straints are applied to localize eyes, which means eyes are
only searched in the top half of a face. Usually, there are
multiple eyes detected around the pupil center. The final
eye localization is the average of the multiple detection re-
sults. The whole systems run at around 10 fps at a P4 2.6G
PC. Examples of eye detection results are shown in Figure
4.

5 Eye Detection Validation

To quantitatively validate the performance of our eye de-
tection method, we performed two experiments. In the first
experiment, we compared the detected eye positions with
the manually labeled eye positions. The performance of our
eye detector is characterized by the eye detection rate and
eye localization error. The localization error is measured
as the Euclidean distance between the detected eye posi-
tions and manual eye positions. In the second experiment,
we quantify the performance of our eye detection based on
its influence on face recognition accuracy of two standard
baseline methods: PCA and PCA+LDA. For both experi-
ments, FRGC 1.0 database is used.

5.1 Eye Detection Accuracy

We apply our eye detection method to all of the 2D images
in the FRGC 1.0 database. The frontal face detection rate is
approximately 95.0%. Usually the missing faces are caused
by uncontrolled illumination. For eye detection alone, it
achieves a detection rate about 99.0% on the detected faces.
As a result, we have an overall 94.5% eye detection rate for
FRGC 1.0. Table 1 shows the horizontal and vertical eye
localization errors, as well as the total error. Additionally,
Table 1 shows both pixel and normalized errors, where the
normalized error is the pixel error normalized by the dis-
tance between two eyes. The average Euclidean distance
between automatic eyes and ground truth is about 6.4 pix-
els, which accounts for 2.67% normalized error. The distri-
bution of the Euclidean distance of detected eyes compared
to the ground truth is shown at Figure 5.

Error horizontal vertical Euclidean
(mean) (std) (mean) (std) distance

(mean)
Pixel 4.9914 4.5808 3.1652 2.6927 6.4016
Normalized 2.04% 1.96% 1.31% 1.35% 2.67%

Table 1: Eye localization error on FRGC 1.0.

Figure 5: Distribution of eye localization pixel errors.

The comparison of eye localization using Haar features
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and proposed discriminant features is shown in Figure 6.
In this figure, the horizontal axis is the normalized local-
ization error, and the vertical axis is the accumulated dis-
tribution, which means the percentage of eyes with smaller
normalized error than the corresponding horizontal value.
From Figure 6, it is observed that the eye localization based
on RNDA features has much smaller localization error than
that based on Haar features. Some commercial products,
such as FaceIt [1] and Viisage [2], also provide eye local-
izations. However, such products are unavailable to us for
comparison .

Figure 6: Comparison of accumulated eye localization er-
rors with Haar feature and RNDA feature.

5.2 Face Recognition Experiment

Since the accuracy of manually provided eye positions is
not confirmed and that nobody knows where the real eye po-
sitions are, it is not convincing to quantify the performance
of our eye detector using the distance between the manual
eye positions and the detected eye positions. To further val-
idate the performance our eye detector, we decide to apply
it to face recognition and use the accuracy of face recogni-
tion to judge its performance. Specifically, face recognition
testing was performed using experiments 1, 2 and 4 from
FRGC 1.0. In each of the three experiments, 608 probe
images were compared against 152 gallery images. In ex-
periment 1, single controlled still images were compared
against single controlled images. The experiment utilized a
set of 183 training images to train the classifiers. In Exper-
iment 2 multiple controlled images were compared against
multiple controlled images. In this experiment 732 images
were used for training. Finally, experiment 4 compared un-
controlled single images to controlled single images. This
experiment used 366 images for training.

For this experiment, a baseline PCA method, and a base-
line PCA+LDA method was used. Both methods are based
on Colorado State University’s Face Identification Evalu-
ation System [3]. In both PCA and PCA+LDA, a simple
cutoff filter was used to retain 40% of the eigenvectors.

Using these face recognition methods, the faces and eyes
are automatically localized from the FRGC images. For
the purpose of validating our eye localization method, we
eliminated the effects of the missed face detections. When
the face detector failed to locate a face, a face region was
simulated with the given eye positions. In the FRGC ex-
periments, there are approximately 95.0% automatic face
detections and 5.0% simulating face detections. Based on
the face detection results, eye localization was successful
on over 99.0% of the FRGC images. If an eye was missed,
the manually marked eye position was used. In total, less
than 15 eyes out of all 4715 FRGC 1.0 samples were man-
ually marked.

Using the location of the eyes, the images were first
clipped, rotated, and scaled to a fixed image size. An ellip-
tical mask was then used to remove extraneous background
components. Finally, a standard histogram equalization was
performed on the faces, and then the recognition algorithms
were applied.

The comparison of face recognition results with auto-
matic and manual eye localizations are summarized in Fig-
ure 7. The CMC curves for each experiment are shown in
Figure 8.(a)-(c). The ROC curve is given in Figure 8.(d).

5.2.1 Experiment 1

The recognition results of experiment 1 are shown in Figure
8.(a). In FRGC 1.0 experiment 1, the automatic recogni-
tion results are very similar to the manually marked recog-
nition results. The PCA face recognition result for manually
marked eye locations was 83.30%, and the fully automated
eye locations resulted in a recognition rate of 81.75%. The
difference between automatic and manually marked points
is only due to recognition errors in 10 out of 608 images.
By looking at the ROC curve we can confirm that the re-
sults for automatically marked eye positions produce very
similar results to manually marked points.

The PCA + LDA recognition results were slightly poorer
than the pure PCA results. However, the automatically
marked points still had very similar performance when com-
pared to the manually marked points.

5.2.2 Experiment 2

The recognition results of experiment 2 are shown in Fig-
ure 8.(b). FRGC 1.0 experiment 2, had remarkably similar
performance between the automated and the manual recog-
nition results. The PCA face recognition result for manually
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marked eye locations was 97.04% and the fully automated
eye locations resulted in a recognition rate of 96.38%.

The difference between automatic and manually marked
points is only due to recognition errors in 4 out of 608 im-
ages. In fact, the automatic face detection missed only 22
out of 608 total faces. The difference between automatic
and manually marked eyes for PCA + LDA was nearly the
same as those for regular PCA.

5.2.3 Experiment 4

The recognition results of experiment 4 are shown in Fig-
ure 8.(c). Experiment 4 was significantly more difficult for
face recognition than the other two experiments. The PCA
face recognition result for manually marked eye locations
was 36.84%, and the fully automated eye locations resulted
in a recognition rate of 25.82%. The results for automated
detection in this experiment compared to manually marked
points are poorer than the results of the previous two exper-
iments. The PCA + LDA recognition differences between
automated and manually marked points are once again sim-
ilar to the PCA results.

5.3 Discussion

We can conclude from the experiments that the recogni-
tion results for the fully automated eye localization and face
recognition are comparable to the manually marked tests.
The recognition results of those two tests are very close,
e.g. 83.30% vs. 81.76% for experiment 1 and 97.04% vs.
96.38% for experiment 2. Considering that usually the sub-
space methods are sensitive to misalignment, our proposed
eye localization method is very successful in these two ex-
periments.

Compared with experiments 1 and 2, experiment 4 shows
poorer recognition results. In experiment 4, probe images
are taken under uncontrolled environments while gallery
images are taken under controlled environment. For this
experiment, the eye positions for probe images have higher
errors, which results in the decrease of recognition accu-
racy. In many applications, the quality of gallery images
can often be controlled, which could alleviative this prob-
lem.

We observed that in experiment 1, even with about
2.67% normalized errors, our automatic eyes show better
recognition accuracy than the synthetic eyes with the uni-
formly distributed noise in Figure 1. This is because the er-
rors produced by the eye detector are more consistent than
the uniform noise so that the smaller variance of eye detec-
tions can produce better recognition accuracy.

In addition, we also noticed that a few images with
poorly detected eyes can often decrease the average per-
formance of our eye detection. The average eye detection

can be improved if those poor eye detections can be iden-
tified and removed from subsequent face recognition. Our
future research will address this problem by associating a
confidence measurement with each detected eye.

6 Conclusion

In this paper, we introduce an automatic eye detection tech-
nique. Experimental results are then provided to show
the validation of the eye detector using FRGC 1.0 data-
base. The results show that face recognition based on the
automatic eye localization has comparable accuracy with
the face recognition based on manual eye positions. This
demonstrates that our proposed eye localization method can
be incorporated into a fully automatic face recognition sys-
tem. Future work will further improving our eye localiza-
tion method under uncontrolled environments.
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Figure 7: Recognition summary with manual and automatic eye positions: PCA and PCA+LDA baseline methods.

(a) (b)

(c) (d)

Figure 8: Recognition results with manual and automatic eye positions on FRGC 1.0. (a):PCA and LDA baseline methods
for experiment 1. (b):PCA and LDA baseline methods for experiment 2. (c):PCA and LDA baseline methods for experiment
4. (d):ROC curves for automated and manually located eyes with PCA baseline method
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