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Abstract

This paper addresses the problem of segmenting low-
level partial feature point tracks belonging to multiple mo-
tions. We show that the local velocity vectors at each instant
of the trajectory are an effective basis for motion segmen-
tation. We decompose the velocity pro�les of point tracks
into different motion components and corresponding non-
negative weights using non-negative matrix factorization
(NNMF). We then segment the different motions using spec-
tral clustering on the derived weights. We test our algo-
rithm on the Hopkins 155 benchmarking database and sev-
eral new sequences, demonstrating that the proposed algo-
rithm can accurately segment multiple motions at a speed
of a few seconds per frame. We show that our algorithm is
particularly successful on low-level tracks from real-world
video that are fragmented, noisy and inaccurate.

1. Introduction

The automated analysis of dynamic scenes from video
data requires ef�cient segmentation of multiple object mo-
tions. Such motions can be generated by independent ob-
jects, articulated parts of the same object, or the camera it-
self. Fast, accurate solutions are required for large volumes
of data, e.g., from surveillance applications. The main con-
tribution of this paper is a fast algorithm for motion seg-
mentation that is highly robust to the noisy, missing, or
partial data typical of real-world tracking algorithms. The
proposed algorithm is computationally ef�cient (seconds or
less per frame), and its speed and performance is indepen-
dent of the number of underlying motions. Figure 1 illus-
trates results from our algorithm on several example video
frames.

As discussed below, many previous motion segmentation
methods are based on applying geometrical constraints to
motion subspaces. Instead, our approach explores a differ-
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Figure 1. Frames from three of the many different sequences used
to test our algorithm. Motion segmentation results are overlaid on
the frames. The �gures in this paper are best viewed in color.

ent aspect of the point track data: the local velocity informa-
tion associated with the point tracks. Our approach begins
by computing avelocity pro�le for each point track, consist-
ing of the local velocity magnitude and direction computed
at each temporal instant. Our expectation is that all the point
tracks associated with a single motion should have a simi-
lar velocity pro�le structure. We decompose each structure
into a different non-negative combination of the same non-
negative motion subcomponents. Our analysis illustrates
that point tracks belonging to the same object motion tend to
have high coherence in the non-negative weight space, and
we exploit this coherence for motion segmentation using the
N-cut graph cut framework proposed by Shi and Malik [15].
Our algorithm offers a consistent framework to handle both
complete and incomplete motion data, where in the latter
case discrimination between motion groups is automatically
learned from partial motion data. As a result our algorithm
is able to segment incomplete point track data without the
need for point track reconstruction steps (e.g., as required
in [13]).

We tested our algorithm on the Hopkins 155 bench-
mark dataset [17], which contains examples of indepen-
dent, articulated, rigid, and degenerate motions, as well
as on the dataset proposed by Sugaya and Kanatani [16].
We also tested our algorithm on several new and challeng-
ing video sequences containing occlusions, multiple ob-
ject motions, and camera motion. We found that our al-
gorithm performs particularly well on natural videos with
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three or more motions, and those with a substantial amount
of missing data. For videos of all the results, which more
clearly illustrate the quality of the segmentations, please
view the supplementary videos athttp://www.ecse.
rpi.edu/ ˜ rjradke/nnmf/ .

2. Related Work

We assume we are given a set ofP feature points tracked
throughF frames, where the location of thepth point in
the f th frame is given by(xp

f ; yp
f ). To allow for missing

data, we also de�ne an indicator variableI p
f that equals 1 if

featurep was tracked in framef , and 0 otherwise.
We can collect all the track information into a2F � P

motion matrixM where thepth column is given by

[xp
1; : : : ; xp

F ; yp
1 ; : : : ; yp

F ]T : (1)

Entries corresponding to missing data (I p
f = 0 ) are as-

signed zeros inM and unused by our algorithm. The goal
of motion segmentation is to determine a permutation of the
columns ofM to form [M 1jM 2j : : : jM N ], where the sub-
matrix M i is composed of point tracks associated with the
i th object motion. Previous solutions to this problem were
based on methods including factorization [4, 7, 8], general-
ized PCA [18], statistical learning [16, 20], and minimum
description length [13].

The basic approach behind several early methods ex-
ploited the observation that the trajectories associated with
each motion lie in a subspace of dimension four or less
[1, 4]. Factorization approaches [4, 7, 8] provided an ele-
gant framework to partition the matrixM directly into max-
imally rank de�cient submatricesM i . However, these ap-
proaches were shown to degrade when the motions were
not independent, or the input point tracks were noisy or in-
complete. Zelnik-Manor and Irani [21] applied factoriza-
tion on the matrixM T with a different objective of cluster-
ing frames containing consistent shapes. They showed that
their approach resulted in temporal segmentation of video
frames (clustering rows ofM ).

The multi-stage learning method proposed by Sugaya
and Kanatani [16], hereafter termed as MSL, combined sub-
space factorization with statistical learning. The algorithm
starts with the subspace factorization approach proposed by
Costeira and Kanade [4], and uses the EM algorithm to re-
�ne the motion segmentation results. While this method
produced very good segmentations, it is generally impracti-
cal since it takes hours to converge.

The algebraic method proposed by Vidal and Hartley
[18], hereafter termed as GPCA, �ts a set of polynomials to
the point tracks after their projection onto a 5-dimensional
subspace. A basis for each motion subspace is obtained
from derivatives of these polynomials, and different mo-
tions are segmented using spectral clustering on subspace

angles. The method is computationally ef�cient. However,
one of the drawbacks is that the proposed method does not
scale well with number of motions. As noted by the original
authors [18], the number of coef�cients that need to be es-
timated grows exponentially with the number of subspaces
and dimension of the subspace. Hence the amount of tra-
jectory data that might be available in a real-time practical
situation will limit GPCA's ability to segment a large num-
ber of motions.

The method proposed by Yan and Pollefeys [20], here-
after termed as LSA, also begins with projecting the point
track data onto a lower dimensional linear normalized sub-
space. In contrast to the global �t subspace criterion pur-
sued by [18], the LSA method seeks to �t a local subspace
around each point. The motion similarity between a pair of
point tracks is computed from the principal angles between
the local subspaces occupied by these tracks. Segmentation
is achieved through spectral clustering. Since the method
relies on local subspace estimation, for motions with sig-
ni�cant spatial overlap, this method will yield suboptimal
performance.

Recently Rao et al. [13] proposed an algorithm, hereafter
termed as ALC, to cluster the point tracks based on the prin-
ciples of lossy minimum description length. They argue
that subspace separation based on matrix rank minimiza-
tion is challenging, and that similar segmentation of point
tracks can be achieved by �nding the set of point tracks that
minimize the coding length required to describe the data up
to a distortion parameter. The method uses an agglomera-
tive scheme to �nd the minimum coding length. This in-
volves running several iterations of the algorithm with dif-
ferent distortion settings to estimate the parameter yielding
the minimum coding length; hence it is a computationally
expensive procedure.

In real-world automatic tracking, scene dynamics, oc-
clusions and tracker limitations can often result in tracks
being highly fragmented, noisy and inaccurate. Many of
the above algorithms have proposed different ways of han-
dling these data irregularities. In the case of GPCA [18],
power factorization is used to project missing data onto a
5-dimensional space. In the case of ALC [13], the algo-
rithm utilizes the subspace constraints to reconstruct the
fragmented and noisy data before the motion segmentation
process. There is a clear need to develop a fast motion seg-
mentation algorithm that can scale well with the number of
motions and can handle partial or missing data ef�ciently.
As illustrated in next sections our proposed algorithm is
able to achieve these objectives in a consistent manner.

3. Proposed Algorithm

Broadly, our algorithm proceeds as summarized in Al-
gorithm 1. We now discuss each step of our algorithm in
detail.



Algorithm 1 Motion Segmentation
1. Compute velocity pro�le matrixV from track data
2. Apply non-negative matrix factorization toV to obtain
subcomponent motionsS and weightsW
3. Compute af�nity matrixA from W
4. Apply spectral clustering toA to generateN clusters

We now discuss each step of our algorithm in detail.

3.1. Point Track Velocity Pro�les

The �rst step in our algorithm is to derive a velocity pro-
�le for each point track. This is simply based on the instan-
taneous magnitude and angle of the track computed as:

mp
f =

q
(xp

f +1 � xp
f )2 + ( yp

f +1 � yp
f )2 (2)

cp
f =

xp
f +1 � xp

fq
(xp

f +1 � xp
f )2 + ( yp

f +1 � yp
f )2

+ 1 (3)

sp
f =

yp
f +1 � yp

fq
(xp

f +1 � xp
f )2 + ( yp

f +1 � yp
f )2

+ 1 (4)

Note thatcp
f and sp

f (the cosine and sine of the angle
plus one respectively) are always in the range [0,2]. The
non-negative representation of the point track velocity pro-
�les ensures that the matrixV can be factored into two
non-negative matrices. An indicator function~I p

f derived
from I p

f denotes whether the velocity pro�le exists at each
point/instant, to account for missing data.

We collect all velocity information into a non-negative
3(F � 1)� P velocity pro�le matrixV where thepth column
is given by

[mp
1; : : : ; mp

F � 1; cp
1; : : : ; cp

F � 1; sp
1; : : : ; sp

F � 1]T : (5)

Unused zeros are entered intoV in the case of missing
data.

3.2. Factorization of Velocity Pro�les

We next factorV using non-negative matrix factoriza-
tion (NNMF), an elegant framework for describing the non-
negative measurements as a non-negative linear combina-
tion of a set of basis vectors which can be thought of as
“building parts” [10]. This parts-based representation of the
data is quite different from the holistic data representation
offered by factorization approaches like PCA and the SVD.
Unlike such approaches, where basis vectors can be added
or subtracted for reconstruction, NNMF only allows for ad-
dition. NNMF has found a wide range of applications in
various areas including face recognition [10], medical data

analysis [3], and microarray analysis [9]. Our intuition be-
hind using NNMF for motion segmentation is that the non-
negative weights used to combine different “parts” for each
track should provide a good measure of data similarity. In
the case of partial or missing data, the parts-based repre-
sentation provided by NNMF offers a way to measure the
similarity between partial data sets that cannot be compared
directly (e.g., due to zero temporal overlap). Although other
approaches such as PCA for missing data [6] exist for han-
dling these data irregularities, our experimental analyses
show that NNMF handles missing data gracefully without
extra steps.

Let us initially assume thatV is fully populated, i.e.,
~I p
f = 1 for all f andp. Formally, our objective is to �nd

non-negative matricesS 2 R3(F � 1) � r
+ and W 2 Rr � P

+ ,
with r � F; P , that minimize

kV � SWk2
F (6)

Here, the matrixS contains the subcomponent “build-
ing parts” of the motions, andW contains the non-negative
weighting of the parts for each point track. For the min-
imization, we apply the common approach of seeking the
solution in an alternating least-squares manner [5]. That
is, we alternate between �xingS and solving forW , and
vice versa. While this procedure is not guaranteed to �nd a
global minimum, we found it to converge quickly in prac-
tice and to result in high-quality segmentations. We apply
the multiplicative update rules initially proposed by Lee and
Seung [10], as given in Algorithm 2.

Algorithm 2 NNMF with Multiplicative Updates

Initialize S 2 R3(F � 1) � r and W 2 Rr � P as random
positive matrices.
for n = 1 toT do

R = V � (SW)
S  S 
 (RW T )
Normalize columns of S to have unitL 1 norm
R = V � (SW)
W  W 
 (ST R)

end for

Here, � and 
 represent matrix element-wise division
and multiplication respectively. Lee and Seung showed that
these rules result in a non-decreasing cost function. The
constraint that the column vectors of the subcomponent ma-
trix S should add to one makes sure that the “parts” de-
rived from factorization are “comparable”. In accordance
with typical practice, we setT to a large number (1000);
an alternative would be to terminate when the residuals stop
changing signi�cantly. To get the best result, we start with
10 random initializations of(S; W), do 10 iterations of up-
dates for each, and proceed to convergence with the pair



having the minimum residualkV � SWk2
F . To avoid nu-

merical problems, exact zeros inV are replaced by machine
precision" .

The number of column vectors inS, denoted byr , cor-
responds to the number of “parts” that make up the velocity
pro�les. One possibility for choosingr is to use a model
selection algorithm to determine the rank of the matrixV ,
as suggested by [19]. For our experiments on the Kanatani
and Hopkins 155 sequences, we simply set the value ofr to
3 and for our longer new video sequences we setr to 4.

Figure 2 shows frames from one of the video sequences
used in our experiments. The feature points that are tracked
are overlaid on the frame. Point tracks correspond to three
different motion groups as indicated by the letters overlaid
on the �gure. Motion groupsA, B and C correspond to
track numbers 1-37, 38-111 and 112-548 respectively. The
associated af�nity matrix, computed as described in [15],
from the non-negative weight vectors generated by our al-
gorithm is shown next to the frame. The af�nity matrix
clearly indicates that the clusters in this case are tight and
well-separated, indicating promise for the motion segmen-
tation problem. The af�nity matrixA is computed as:

A(i; j ) = exp
�

�k w(i ) � w(j )k2

�

�
(7)

where� is the scale andw(i ) is the i th column vector of
W . We used� in the range 0.01-0.03.
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Figure 2. On the left a video frame from the Hopkins 155 [17]
database containing multiple motions is shown. On the right the
af�nity matrix computed fromW is shown. A brighter pixel
means more similarity. The block diagonals correspond to dif-
ferent motions. For this example, our algorithm yielded 0% mis-
classi�cation.

3.2.1 Handling Incomplete Data

For incomplete data cases, the cost function (7) must be
modi�ed to

F � 1X

f =1

PX

p=1

~I p
f kvp

f � Sf W pk2; (8)

where(vp
f = ( mp

f ; cp
f ; sp

f )T andSf andW p are the appro-
priate3 � r andr � 1 submatrices, respectively.

The multiplicative update rules used here provide a sim-
ple but effective framework for handling missing data val-
ues. The matrixR computed during Algorithm 2 deter-
mines the ratios by which elements in the matricesS andW
are tuned during each iteration. For the missing data cases,
the elements ofR corresponding to~I p

f = 0 are simply set
to 1, meaning that they have no in�uence on the update.

To motivate the use of NNMF for partial data analysis
we �rst illustrate it on a simulated missing data example.
Consider the point tracks for the example sequence shown
in Figure 2. In order to simulate missing data, for half of
the tracks in each motion group we forced the tracks to
have a long band (60-70%) of missing data. The bands of
missing data were laid out in such a way that half of the
tracks in each motion group have zero overlap with half of
the tracks from other groups (Figure 3). Considering the
inter- and intra-object occlusions in the scene and tracker
limitations, it is not unusual for real-world point tracks to
exhibit such data irregularities. Because of these data irreg-
ularities, neither direct comparison of the original tracks nor
direct application of dimensionality techniques like PCA or
SVD is possible here. We use the NNMF framework as de-
scribed above to factorize these partial tracks. Through iter-
ative steps, NNMF constructs its “building parts” and non-
negative weights from the available partial data. The in-
herent similarity in the data is captured by the non-negative
weights that are used to combine the “parts”. The af�n-
ity matrix computed from the non-negative weights for this
missing data case shows similar clustering behavior to the
one derived for the complete data case in Figure 2. The
results presented in Figure 3 clearly demonstrate the appli-
cability of NNMF for clustering partial point track data.
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Figure 3. The mask indicating missing data (black pixels) for the
example sequence is shown on the left. On the right the af�nity
matrix computed from the non-negative weight matrixW for this
missing data case is shown, which is quite similar to the af�nity
matrix from Figure 2.

3.3. Spectral Clustering

Generally, we can apply any clustering technique to the
column vectors ofW to retrieve theN motion clusters.



To avoid the K-means random initialization which is part
of spectral clustering [12], we use the iterative multi-stage
spectral clustering algorithm proposed by Shi and Malik
[15] to achieve stable segmentation results. From a graph
cut perspective, our clustering strategy can be viewed as
�nding subgraphs representing different motions. Here, the
column vectors ofW form nodes in the graph, and the sim-
ilarity A computed between column vectors ofW form the
edge weights. Clustering is achieved through a normalized-
cut of this graph network into subgraphs representing dif-
ferent motions.

4. Experiments

In this section, we report experimental results on the test
sequences proposed by Sugaya and Kanatani [16], the Hop-
kins 155 benchmark dataset [17], and several new and chal-
lenging video sequences. In the case of the Kanatani and
Hopkins 155 sequences, the point tracks are given and were
manually cleaned and associated with underlying motions.
Thus, we can compute the classi�cation error, given by the
ratio of number of misclassi�ed point tracks to the total
number of point tracks. In our new videos, point tracks are
automatically generated without cleaning, outlier rejection,
or manual classi�cation, and qualitative results are reported.

4.1. Kanatani Sequences

We �rst ran our algorithm on the sequences proposed by
Kanatani [8]. Like MSL, GPCA and ALC, our algorithm
achieves 0% misclassi�cation. For comparison of these re-
sults with additional algorithms, see [16, 18]. Except for
GPCA, the computational requirements for the other algo-
rithms are much higher than ours. The average computation
time taken by our algorithm on these sequences is 2.5 secs.

4.2. Hopkins 155 Database

The Hopkins 155 database consists of 155 motion se-
quences representing various motion conditions including
independent, articulated, partially dependent, and degener-
ate motions. The database is subcategorized into different
types, and we compared our algorithm on thetraf�c andar-
ticulatedcategories. Thetraf�c set consists of 38 sequences
of outdoor traf�c scenes taken by a moving handheld cam-
era. Most scenes contain degenerate motions, particularly
linear and planar motions. Thearticulatedset consists of 13
sequences displaying motions constrained by joints, heads,
faces and other non-rigid motions. Refer to [17] for more
details on the Hopkins 155 database. We tested our algo-
rithm on this database and compared the performance with
the motion segmentation results reported in [16, 18]. To
obtain a fair comparison with previous work, we tested our
algorithm separately on sequences with two motions (Table
1) and three motions (Table 2). As with the comparison al-

gorithms, our algorithm is provided with the original point
track data and the known number of motions as input (used
in the spectral clustering phase).

We report the mean and median classi�cation errors and
the average computation time (Table 3) for the three video
categories. We compare our algorithm with MSL, LSA,
GPCA, and ALC, algorithms which are considered as the
state-of-the-art and whose performance results are reported
in [16, 18, 13]. Our results were obtained on an Intel dual
core 2.4 GHz processor with 2 GB RAM.

Table 1. Misclassi�cation percentages for sequences with two mo-
tions. The number of sequences for each category is given in
parentheses.

Traf�c (31) MSL LSA GPCA ALC Ours
Mean 2.23% 5.43% 1.41% 1.59% 0.1%
Median 0.0% 1.48% 0% 1.17% 0%
Articulated (11) MSL LSA GPCA ALC Ours
Mean 7.23% 4.10% 2.88% 10.7% 10%
Median 0.0% 1.22% 0% 0.95% 2.6%

Table 2. Misclassi�cation percentages for sequences with three
motions. The number of sequences for each category is given in
parentheses.

Traf�c (7) MSL LSA GPCA ALC Ours
Mean 1.8% 25.07% 19.83% 7.75% 0.1%
Median 0% 23.79% 19.55% 0.49% 0%
Articulated (2) MSL LSA GPCA ALC Ours
Mean 2.71% 7.25% 16.85% 21.08% 15%
Median 2.71% 7.25% 16.85% 21.08% 15%

Table 3. Average computation times for various algorithms
Method MSL LSA GPCA ALC Ours
Time 19.6 hr 9.7 sec 0.72 sec 21 min 3 sec

As demonstrated by the results, our algorithm gives ex-
cellent results for the real-worldtraf�c sequences, and com-
parable results with the other algorithms for thearticulated
sequences. The computation time required by our algorithm
is on the order of seconds. Both LSA and GPCA have com-
putation time on the order of seconds whereas MSL and
ALC require higher computation time due to the iterative
nature of the algorithms. We note that our proposed algo-
rithm is based on a linear matrix factorization and hence
might yield suboptimal results for sequences with “strong”
camera rotations and background perspective effects. This
was validated through our experimental analysis on such
sequences fom Hopkins 155checkerboardcategory which
contained non-linear effects.

4.3. Missing Data Cases

We next tested and compared the performance of our al-
gorithm for missing data cases we introduced into the Hop-



kins 155 sequences. In real-world automatic tracking, fea-
ture points frequently get occluded or the quality of the fea-
ture correspondence degrades during the course of tracking,
forcing the tracker to abandon the point track. Hence, it
is quite important for segmentation algorithms to robustly
handle these data irregularities.

In order to test the ability of our algorithm to handle
missing data, we generated random binary masks as shown
in Figure 4. For each mask shown, black denotes missing
data and white otherwise, and the width and height of the
mask represents the number of point tracks and the num-
ber of total frames respectively. For each randomly selected
point track, we randomly �x thestart anddurationof a fea-
ture point's successful tracking window. This mask gener-
ation process ensures a resulting point track set that con-
tains a mix of a few complete tracks and many incomplete
tracks with varying degrees of “incompleteness”. We found
this mask generation process to closely simulate automati-
cally generated tracks in real world scenes. In our experi-
ments, we generated masks that represent 25-35% missing
data values. We used the masks to force missing data in
both thetraf�c andarticulatedcategories, and ran the pub-
licly available ALC algorithm [13] and our algorithm on
these sequences. For each motion data sequence from these
categories, we applied the same mask before running both
algorithms.

We were interested to compare the segmentation perfor-
mance of our algorithm with the ALC approach, because
the ALC algorithm uses an additional step to reconstruct
the data before applying the segmentation algorithm. In
contrast, our algorithm does not explicitly reconstruct the
data but handles missing data through NNMF factorization.
Our results (Table 4) illustrate that our segmentation algo-
rithm is fast and robust in the presence of incomplete data,
with only a slight loss in performance over the complete
data scenario. Handling partial motion data is important for
motion segmentation in real-time and real-world scenarios
as illustrated by our next set of experiments.

Figure 4. One of the binary masks used for an example sequence
is shown here. Here the rows and columns of the binary mask
represent framesF and pointsP respectively.

4.4. New Video Sequences

In order to test the robustness of our algorithm to
real-world, rather than provided/cleaned tracks, we gen-

1Complete data timings are reported from [13] and may not be compa-
rable with the missing data timings (run on our PC)

Table 4. Misclassi�cation percentages for sequences with 20-30%
missing data vs. complete data. The results for ALC complete data
are reported in [13].

Missing Data Complete Data
Traf�c ALC Ours ALC Ours
Mean 5.77% 2.2% 2.77% 1.1%
Median 2.39% 0.5% 1.10% 0%
Average Time 13.9 min 5 sec 17.19 min1 5 sec
Articulated ALC Ours ALC Ours
Mean 18% 13% 13.71% 11%
Median 17% 11% 3.46% 3%
Average Time 8 min 3.6 sec 10.43 min1 3.6 sec

erated several new video sequences that contain multi-
ple motions and are substantially longer than most of the
Kanatani/Hopkins sequences. The low-level features are
automatically tracked over time using a hierarchical imple-
mentation [2] of the Kanade-Lucas-Tomasi optical �ow al-
gorithm [11]. No manual effort was made to correct or re-
move incorrect tracks, and point track generation is a con-
tinuous process. That is, at each frame new feature point
tracks are initiated in addition to the existing ones. In con-
trast, all of the Kanatani/Hopkins sequences only use track
points initiated in the �rst frame. The continuous approach
ensures a sizable set of “good” point tracks representing
different motions in the scene (e.g., producing more tracks
when the camera pans signi�cantly). On the other hand, the
continuous point track generation process results in wide
variations in the temporal extents of the tracks. A robust
motion segmentation algorithm should produce good results
in the presence of such data.

We tested our algorithm on four different video se-
quences we calleddrinkingcoffee, racquetsession, panning-
camera and rotatingcontainers. The drinkingcoffeese-
quence contains two different motions, one caused by the
person rotating in his chair and the other by the motion of
the coffee cup which involves both rotation and translation.
Theracquetsessionsequence contains two complex articu-
lated motions generated by the movement of the person and
of the racquet head. Thepanningcamerasequence contains
two motions, one generated by the person walking and the
other by the camera motion. In this sequence, as the camera
pans across the scene, feature points appear and disappear
at the edges of the frame. For these three sequences, as a
result of continuous feature point extraction and tracking,
the point tracks have wide variations in their temporal ex-
tent. Therotatingcontainerssequence contains four differ-
ent motions: two containers displaying different rotations
but the same (minimal) translational motion, a person lean-
ing forward displaying looming/translational motion, and
points in the background which are basically stationary. The
binary mask indicating missing data for theracquetsession
sequence is shown in Figure 5, illustrating the “incomplete-
ness” and variations in the degree of temporal overlap.



Figure 5. The binary mask obtained from theracquetsessionse-
quence, indicating “incompleteness” and variations in track over-
lap. Some track pairs even have zero overlap. The top row corre-
sponds to the �rst frame.

The automatically extracted tracks from these sequences
and the true number of object motions were input to both
our algorithm and the ALC algorithm. Segmentation results
from our algorithm are overlaid on exemplar frames from
these sequences as shown in Figure 6. The results illustrate
that our algorithm is able to produce excellent segmenta-
tions on these challenging videos compared to the ALC al-
gorithm, which resulted in incorrect segmentations on all
sequences (Figure 6i-j) exceptdrinkingcoffee. Table 5 gives
details on the videos and timings.

In order to highlight the coherence of point tracks be-
longing to the same motion, we show in Figure 7 the af�n-
ity matrices computed from the non-negative weight vec-
tors (column vectors ofW ). We have conducted addi-
tional experiments on a variety of video sequences and
results are available athttp://www.ecse.rpi.edu/
˜ rjradke/nnmf/ .

Table 5. Computation Time for Segmentation of New Videos
Sequence drinkingcoffee racquetsession camerapanning rotatingcontainer
Num of points 1682 407 52 135
Num of frames 49 98 56 290
ALC time 26 hr 20 min 9 min 2.3 min
Ourstime 54 sec 36 sec 12 sec 27 sec

5. Conclusions and Future Work

We presented a new motion segmentation technique
based on non-negative factorization of velocity pro�les to
achieve fast and robust motion segmentation from partial
low-level feature point tracks. As opposed to previous
motion segmentation algorithms that relied on geometrical
subspace constraints on the positional information of point
track data, the approach proposed in this paper uses the in-
stantaneous velocity information extracted from the point
tracks. The proposed approach is simple, fast, and can han-
dle noisy and incomplete data under various motion condi-
tions.

In future work, we plan to fuse the velocity-based motion
segmentation approach with low-level object segmentation
to distinguish multiple similarly moving objects. We also
plan to �nd better ways of initializing the NNMF, and in-
vestigate whether different constraints onS andW produce
better motion clusters. The NNMF technique could also be
extended based on the ideas of Kernel PCA [14] to handle

Figure 6. The segmentation results of our algorithm on new video
sequences are shown here. (a-c)drinkingcoffee, (b-d) racquetses-
sion, (e-g) panningcamera, (f-h) rotatingcontainers. Panels (i-j)
are segmentation results from the ALC algorithm forpanningcam-
era androtatingcontainers. Except for segmentation ondrinking-
coffee, the ALC algorithm yielded poor results on the other se-
quences.

non-linear “parts”. Finally, we plan to improve our clus-
tering technique to automatically determine the number of
underlying motions.
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Figure 7. Af�nity matrices computed fromW for the new se-
quences. A brighter pixel means more similarity. The column
vectors ofW are sorted based on the clustering obtained by our al-
gorithm. Block diagonals correspond to different object motions.
The clustering accuracy is con�rmed through visual inspection of
video sequences.
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