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Abstract—We consider the person re-identification problem,
assuming the availability of a sequence of images for each
person, commonly referred to as video-based or multi-shot re-
identification. We approach this problem from the perspective of
learning discriminative distance metric functions. While existing
distance metric learning methods typically employ the average
feature vector as the data exemplar, this discards the inherent
structure of the data. To overcome this issue, we describe the
image sequence data using affine hulls. We show that directly
computing the distance between the closest points on these affine
hulls as in existing recognition algorithms is not sufficiently
discriminative in the context of person re-identification. To this
end, we incorporate affine hull data modeling into the traditional
distance metric learning framework, learning discriminative
feature representations directly using affine hulls. We perform
extensive experiments on several publicly available datasets to
show that the proposed approach improves the performance of
existing metric learning algorithms irrespective of the feature
space employed to perform metric learning. Furthermore, we
advance the state of the art on iLIDS-VID, PRID, and SAIVT,
with absolute rank-1 performance improvements of 6.0%, 11.4%,
and 6.0% respectively.

Index Terms—Re-identification, camera network, video analyt-
ics.

I. INTRODUCTION

ECOGNIZING the same person as s/he moves through a

network of cameras with non-overlapping views, called
re-identification or re-id, is a fundamental problem in video an-
alytics, with crucial applications in security and surveillance.
Consequently, the re-id problem has drawn increasing attention
from the computer vision community. Much related research
has focused on the single-shot version of the problem [1]-
[9], wherein it is assumed that only one image per person
per camera view is available. However, this is not the case
in practical and real-world applications of re-id. For instance,
once a person of interest is identified in a “probe” camera view,
it is natural for that person to be tracked in a surveillance
application to obtain an image sequence. Furthermore, all
candidates observed in the target, or “gallery”, camera view are
typically also tracked. In such a “tag and track” application of
re-id [10], [11], instead of a single image, we have a sequence
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or track of images for each person. Therefore, re-id in practice
is a problem of matching image sequences rather than solitary
images.

This problem formulation raises two critical questions: (1)
how do we describe the available “multiple instance” data for
each person? and (2) how do we exploit this data description to
learn feature representations that are sufficiently discriminative
to perform accurate re-id? Traditional re-id approaches are
typically based on learning feature representations so that
probe and gallery feature points corresponding to the same
person are close in the learned feature space whereas those
corresponding to different people are relatively far [1], [6],
[12], [13]. A naive application of this approach to our problem
would be to either take the average of the available feature
points as an exemplar or consider all the available feature
points individually, in which case we would have to deal
with millions of constraints and implementation infeasibility.
Furthermore, and more crucially, such approaches fail to
capture the inherent structure of the multiple instance data
of each person.

Representing multiple instance data in the context of recog-
nition has been a longstanding problem in machine learning
and is typically studied as a multiple instance learning (MIL)
problem [14]. While traditional MIL represents data as bags of
feature points and recognizes a bag as positive if it contains at
least one positive instance, we need a different interpretation
in the context of re-id. In re-id, we have multiple feature
points corresponding to a single person, all of which are
positive instances. Subsequently, the representation of this data
as an “image set” is more appropriate. Developing recognition
algorithms based on image sets has been an active research
area, with several approaches based on constructing affine or
convex hulls of the data and considering the distance between
the closest points on these hulls [15]-[17].

In this paper, we show that such a distance computation
between affine hulls is not discriminative enough for re-id.
Consequently, a natural question to address is: what are good
representations of these affine hulls that make subsequent
reasoning more accurate? Traditionally, distance metric learing
approaches are adopted to learn discriminative representations
of feature vectors. Can we learn such discriminative metric
learning-based feature representations in the context of affine
hulls? Traditional distance metric learning is typically based
on solitary feature points and extending it to the case involving
affine hulls of data is a non-trivial problem. In this regard, how
do we directly learn distance metrics using affine hulls? It is
natural to expect computational difficulties when dealing with
affine hull representations of large amounts of data. So, is there



a computationally efficient way of learning such discriminative
feature representations?

In this paper, we propose an approach that addresses all
questions raised above in a principled and intuitive manner.
To be specific, our contributions are discussed below.

o Data description: We tackle the problem of describing
the multiple instance data inherent in multi-shot re-id by
constructing affine hulls. Such a mathematical representa-
tion provides for an intuitive description of the available
data.

o Learning discriminative affine hull representations:
We show that the traditionally used approach of com-
puting the distance between affine hulls in algorithms
based on image sets is not sufficiently discriminative
in the context of re-id. We overcome this problem by
learning discriminative feature representations learned
directly from these affine hulls.

« Improving metric learning: We empirically demonstrate
the efficacy of discriminative affine hull representations in
the context of several existing metric learning algorithms.
Specifically, we demonstrate the improvements achieved
when compared to distance metrics learned using the
traditional approach of taking the average feature point
as the data exemplar.

« Extensive empirical validation: We perform extensive
experiments on several state-of-the-art metric learning al-
gorithms in the context of a wide variety of features using
publicly available multi-shot re-id datasets to validate the
impact of the proposed approach. We improve the state of
the art, measured in terms of mean rank-1 performance,
by 6.0%, 11.4%, and 6.0% on iLIDS-VID, PRID, and
SAIVT datasets respectively.

II. RELATED WORK

Person Re-Identification. Much prior work in re-id can be
categorized into two key themes: appearance modeling and
metric learning. Since the early work of Gray and Tao [18]
that divided an image into horizontal strips and extracted color
and texture histograms, several appearance modeling schemes
have been proposed. Bazzani et al. [19] designed a scheme
in which local features describing the chromatic content, the
spatial arrangement of color, and the recurrence of textured
patterns were accumulated into a single descriptor. Ma et
al. [20] used spatial, intensity, and gradient information at each
pixel and encoded these local descriptors into Fisher vectors.
Zhao et al. [S] proposed so-called dense features, wherein
the image was regularly divided into numerous local patches
and texture histograms and SIFT features [21] from each
patch were concatenated into a single descriptor. Some recent
methods include LOMO [22], where color and LBP features
are constructed in conjunction with the retinex transform,
and GOG [23], where local image patches are modeled in a
hierarchical fashion using Gaussian distributions. End-to-end
feature learning methods such as finetuning existing convolu-
tional neural network models have also been explored [24],
[25]. These learned features are typically used in conjunction
with metric learning methods to perform re-id. A structured

survey of these and several other related appearance modeling
methods can be found in [26].

The goal of distance metric learning is to learn a new
feature space in which feature vectors of the same person
stay close whereas the feature vectors of different people
are far apart. This is typically mathematically represented in
terms of pairwise constraints on the available feature vectors.
Prosser et al. [1] used the pairwise constraints to formulate
a ranking problem in the support vector machine (SVM)
framework. Mignon and Jurie [12] used the pairwise similar
and dissimilar constraints in a logistic loss minimization
problem to learn the feature transformation matrix. Xiong et
al. [6] recently proposed kernel versions of some of these
popularly used metric learning algorithms. Martinel et al. [27]
identified salient image regions to construct robust appearance
descriptors, following which a Mahalanobis distance metric
was learned to capture inter-camera variations. Liao et al. [22]
employed quadratic discriminant analysis to formulate an
eigendecomposition problem similar in spirit to the traditional
Fisher discriminant analysis [28] and learned a cross-view
discriminative subspace. In similar spirit to learning distance
metrics, Martinel et al. [29] proposed the concept of warp
functions that essentially capture all possible non-linear feature
transformations of person images from one camera view to
the other. A discussion of related metric learning methods
can be found in [30]-[33] and the references therein. A
systematic experimental evaluation of feature extraction and
metric learning algorithms can be found in the paper by
Karanam et al. [34].

Methods directly tackling the multi-shot re-id problem have
also been proposed. Even in this case, there has been prior
work along the lines of appearance modeling and metric
learning, although a more accurate way of applying metric
learning in this case would be to learn a ranking function given
the multiple instance data for each person. Wang et al. [35]
formulated the multi-shot re-id problem as an image sequence
matching problem, taking the associated temporal aspect into
account to rank video fragments using a compact descriptor
based on quantized spatial and temporal gradients, called
HOG3D [36]. Liu et al. [37] also approached the problem
in the same spirit, extending the popular 2-dimensional Fisher
vector representation to incorporate spatial and temporal infor-
mation to design a 3-dimensional Fisher vector representation,
called STFV3D. On the other hand, a few algorithms formulate
the problem in terms of learning a ranking function. Li et
al. [38] learned multiple personally-discriminative random
forests to classify the multiple instance data corresponding to
each person. Lisanti et al. [39] hypothesized that the feature
vector of a particular image of a person in one camera view
can be expressed as a sparse linear combination of the feature
vectors of all the available images of the same person in
some other camera view, thereby formulating a sparse recovery
problem to rank gallery candidates. Li er al. [40] learned a
discriminative feature space by iteratively learning a Fisher
transformation matrix and hierarchically clustering image se-
quences. Karanam et al. [41], [42] formulated the multi-shot
re-id problem as one of recovering block sparse coefficient
vectors, demonstrating a generic ranking framework that can



be used to improve the performance of existing metric learning
methods.

Image set description and recognition. Most prior work in
image set recognition models image sets as affine or convex
hulls of the available data and subsequently determines the
distance between the closest points on these hulls to perform
recognition. Cevikalp and Triggs [15] used this idea to develop
both linear and non-linear hull distance algorithms for face
recognition. Subsequently, several other hull distance algo-
rithms have been proposed. Hu et al. [16] hypothesized that the
dissimilarity between image sets can be sparsely approximated
from their respective image samples and formulated the so-
called sparse approximated nearest points (SANP). Yang et
al. [17] formulated a regularized linear hull distance algorithm
to generate regularized nearest points (RNP) on hulls of data.
Wu et al. [43] incorporated collaborative representation into
the framework of RNP and re-formulated the objective to
come up with a compute-efficient hull distance algorithm.
Algorithms that directly learn distance metrics using hull
data description schemes have also been proposed. Zhu et
al. [44] proposed point-to-set and set-to-set learning methods,
formulating the distance metric learning problem as a convex
optimization problem in an SVM-like framework.

III. PROPOSED APPROACH

In this section, we describe the proposed approach to learn
discriminative affine hull representations. We first begin with
a brief introduction to the distance metric learning problem as
well as describing data using affine hulls.

A. The distance metric learning problem

The goal of distance metric learning is to learn a new
feature space where the feature vectors belonging to the same
people are close whereas the feature vectors belonging to
different people are far apart. Formally, let p; and g; be
two feature vectors of the person with index 1 in the probe
and gallery cameras respectively. Let go be the feature vector
of some other person in the gallery camera. The goal of
distance metric learning can be mathematically formulated as
learning a distance function, d(x,y), that takes in two feature
vectors x and y as inputs, and satisfies the following ranking
relationship:

d(p1,81) < d(p1,82) (1)

Using such “pairwise constraints”, most distance metric
learning methods learn a feature space transformation matrix
T that is used to compare feature vectors. In the transformed
feature space, the distance function typically takes the follow-
ing form:

d(x,y) =T x =TTyl )

With this background, we formally introduce the overall
mathematical formulation that is generally employed to learn
distance metrics for the re-id problem. Let P = {p1,...,pn}
be feature vectors corresponding to N people in the probe
camera. Similarly, let G = {g1,...,gn} be the N feature

vectors corresponding to the same NN people in the gallery
camera. Any distance metric learning method typically first
constructs pairs of “similar” and “dissimilar” feature vectors.
Let

denote the set of all the N pairs of similar feature vectors and

N ={(pi,gj)li,j=1,...,N,i#j} 4)

denote the set of possible pairs of feature vectors belonging
to different people. A very general distance metric learning
problem in the context of re-id can be posed as the following
mathematical optimization problem:

min (S, N) + AR(S, ) )

where (S, ) is the loss function, parameterized by T, that
the metric learning algorithm seeks to minimize and R(S, N)
is an optional regularization function to prevent the learned
distance metric from overfitting.

B. Issues with distance metric learning in the multi-shot
setting

In the multi-shot setting of the re-id problem, we have a
set of feature vectors for each person. A natural extension
of metric learning to this case would be to construct pairwise
constraints from all the available feature vectors, which would
run into millions! Apart from the obvious computational diffi-
culties, such an approach disregards the underlying structure of
the set of feature vectors, potentially resulting in a transformed
feature space that gives sub-optimal re-id performance.

C. Describing data using affine hulls

The issues discussed above can be addressed by describ-
ing data as affine hulls. Given the feature vectors P =
{P1,-.-,Pn}, Pi € R" corresponding to n images of a certain
person, the affine hull [45] of this data is the smallest affine
subspace containing the data. Formally, if pu = %2?21 P:
is the mean vector of the data points and U € R"*? is an
orthonormal basis describing the data, the affine hull of P can
be written as the set H(P) = {x = Uv+p | v € R'}. An
illustration of this concept is provided in Figure 1.

Given a probe image set P and a gallery image set G,
image set based recognition algorithms typically first construct
the affine hulls of these two sets. To compute the extent of
similarity/dissimilarity between P and G, the general workflow
is to determine the two points, one on each of the two affine
hulls, that are closest to each other. Subsequently, the distance
between these two points is used to represent the distance
between the two sets P and G. An illustration of this concept
is provided in Figure 2.

Formalizing this notion, if s and t represent the two nearest
points on the affine hulls H(P) = {x, = Upv, + up | vp €
R'} and H(G) = {xg = Uyv, + iy | vy € R'}, we solve the
following optimization problem to find them:



Fig. 1. The affine hull of data samples is a t-dimensional affine subspace in
the r-dimensional space of feature vectors.

Probe affine hull

hull-to-hull distance

Gallery affine hull

Fig. 2. The distance between two affine hulls is the length of the shortest
line connecting one point on each subspace.

min - lxp — %13 ©6)
The closest points are then given by s = U,v, + p, and
t = Uyvy + g, where vy and vy are the optimal solutions
to the minimization problem in Equation 6. The distance
between P and G is then simply taken as d = ||s — t||.
Most hull distance algorithms differ in how they formulate
the optimization problem of Equation 6. While AHISD [15]
uses the same formulation as above, algorithms like SANP
[16] and RNP [17] incorporate some kind of regularization
into the problem formulation, typically based on the /1 or [y
norm to determine the closest points. Once the closest points
are determined, computing the distance between the image sets
reduces to the same Euclidean distance computation as above.

D. Learning Discriminative Affine Hull Representations: Im-
proving Metric Learning Algorithms

Before describing the proposed approach, we lay out the
notation used in the subsequent sections. We use P; to denote

the set of feature vectors corresponding to the images of the
person with index ¢ in the probe camera of the training set.
Similarly, G; denotes the set of feature vectors corresponding
to the images of the same person in the gallery camera of the
training set. Let N, be the number of unique people in the
probe and N, be the number of unique people in the gallery.
Let (s;,t;) be the pair of closest points on the affine hulls of
P; and G;.

Our key insight is that directly computing the distance
between the closest points on the affine hulls of P; and G;
will not lead to accurate re-id results because this would be a
unsupervised, suboptimal approach. To this end, we propose
to learn distance metrics that result in discriminative repre-
sentations of these affine hulls. Essentially, the formulation
is in the same spirit as traditional metric learning algorithms
that formulate pairwise constraints on the average feature
points. However, the key idea is that we now formulate these
constraints on pairs of closest points computed using affine
hulls of the sets of image data available for each person. To
make this more clear, let P;, G;, and G; be three sets of feature
vectors. Let (s;,t;) and (s;,t;) be the pairs of closest points
on the affine hulls of {P;, G;} and {P;, G;} respectively,
computed using some hull distance algorithm. Furthermore,
for the sake of discussion here, let a?, af, and a? be the
average feature points of the sets P;, §;, and G; respectively.

Traditional metric learning algorithms formulate learning a
new feature space with respect to constraints on the average
feature points. Specifically, a new feature space is learned such
that

d(aj,al) < d(aj,a) (7)

where d(x,y) is the learned distance metric. In other words,
the goal is to ensure the average feature points of the same
person in the probe and gallery views are close whereas those
of different people are relatively far. In contrast, we propose
to enforce constraints on the pairs of closest points on the
affine hulls of these sets. Specifically, our approach learns a
new feature space such that

d(s;, t;) < d(si, t;) ®)

where d(x,y) is the learned distance metric. In addition to
exploiting the underlying structure of the data, this approach
is also relatively robust to noise. While the average feature
point of a set is skewed by the presence of a few outliers, this
is not the case for the pair of closest points determined from
affine hulls. The idea, and its difference from the traditional
approach, is illustrated in Figure 3.

To put the proposed approach in a more formal frame-
work, as before, let {P1,Pa,..., Py} be N sets of feature
vectors corresponding to N people in the probe camera and
{G1,Ga,...,GN} be the corresponding gallery feature sets.
We form pairs of positive and negative feature sets and
compute the closest pair of points from the corresponding
affine hulls, thus generating sets of similar feature vectors



Probe feature vectors

Traditional approach

Learned space

Proposed approach

Gallery feature vectors

Gallery affine hull

Probe affine hull

Learned space

Fig. 3. An illustration of the main idea presented in this paper. In the traditional approach (top half of figure), the distance (in a learned transformation space)
between the average feature vectors of multi-shot data (squares) is used to characterize the similarity between the probe and gallery sets. In the proposed
approach (bottom half of figure), the learned space is based on the pairs of points defining the affine hull distance (triangles), which better characterizes the

set-to-set similarity.

and dissimilar feature vectors

N ={(sf*,t2))i,j = 1,...,N,i # j}. (10)

Note that each pair (s;,t;) in both similar and dissimilar
sets is formed from the corresponding feature sets (P;,G;).
Once we have constructed the training data from pairs of
closest points, the metric learning problem to learn the distance
metric can then be formulated as before:

an

While this is a generic problem formulation, we give some
algorithm-specific details as to how to incorporate the pro-
posed approach into the metric learning framework. In PCCA-
like algorithms that learn Mahalanobis distance metrics, the
process is straightforward. Specifically, as described in the
original paper, PCCA learns the matrix T by minimizing an
objective function based on logistic loss. Specifically, the loss
function used is

Ir%[i‘nl(S,N) +AR(S,N)

US,N) =Y ls(ti(d*(x,y) = 1)) (12)
i=1

where n is the number of training samples, t; = 1 if

the i** training sample (x;,y;) is a positive example and

t; —1 if the 4*" training sample is a negative pair,

lg(z) = % log(1+fx) is the generalized logistic function, and

d*(x,y) = (x —y) "' T(x —y) is the distance function. Once
we have the pairs of similar and dissimilar feature vectors S
and A as constructed above, we can easily use this data to
minimize the objective function in Equation 12.

In FDA-like metric learning algorithms [11], [28], the
distance metric is learned by solving generalized eigenvalue
problems involving data scatter matrices. Specifically, the
projection matrix T is learned as

T = argmaz trace{(T' A, T) 'TTA,T}
T

Again, the proposed approach can be easily incorporated
into this framework by constructing the within-class (A,,) and
between-class (Ajp) matrices using pairs of closest points on
affine hulls obtained as described above. In this case, the loss
function used to learn the projection matrix is

I(S,N) = trace{(T"A,T) 'T"A,T}

which is maximized to determine T.

E. Re-Identification using learned representations

Given a probe person represented by the corresponding
feature set P and N feature sets G;, ¢ = 1,..., N of the
people in the gallery, we employ the following procedure to
determine the identity of the probe person:



« Construct affine hulls for each pair {P,G;} and find the
pairs of closest points (s”,s?), ¢ = 1,...,N on these
hulls using a hull distance algorithm.

o Determine the representations § and §Y of s? and s/
respectively in the new feature space learned with a
metric learning algorithm.

« Assign the identity of the gallery representation 87 with
the least Euclidean distance to SP as the identity of the
probe person.

IV. EXPERIMENTS AND RESULTS
A. Datasets

We empirically validate the proposed algorithm on the

following publicly available multi-shot re-id datasets:

o iLIDS-VID: The iLIDS-VID [35] dataset contains image
sequences of 300 people as seen from two cameras with
non-overlapping views in an indoor airport environment.
The length of the image sequences varies from 23 frames
to 192 frames, with an average length of 73 frames.

o PRID 2011: The PRID 2011 [46] dataset contains image
sequences of 385 people seen from one camera, and 749
people seen from an adjacent camera, both situated in
an outdoor environment with non-overlapping views. To
ensure evaluation consistency with [35], we only consider
sequences corresponding to 178 people seen in both
views. The average sequence length for these people is
100 frames.

e SAIVT-SoftBio: The SAIVT-SoftBio [47] dataset con-
tains image sequences of 150 people passing through
8 cameras in an airport surveillance network. To ensure
evaluation consistency with [47], we only consider two
camera pairs: cameras 3 and 8 (which we call SAIVT-
38) with 99 people and cameras 5 and 8 (which we call
SAIVT-58) with 103 people.

B. Training/Testing protocol and parameters

For each dataset, we generate 10 sets of training and testing
data splits. For iLIDS-VID and PRID 2011, we use the same
equal-sized training and testing splits as provided in [35]. For
SAIVT-38, we use images of 31 people as the training set and
the rest as the testing set. For SAIVT-58, we use images of
33 people as the training set and the rest as the testing set.

We use the training data to learn a distance metric, as
described below, and then compute the re-id performance
for each split in the transformed feature space and report
the average performance across all the splits. While most
results described in this section are generated using the RNP
[17] algorithm with parameters A\; = 10 and Ay = 1 to
determine the closest points on affine hulls, we also analyze
the performance of the proposed approach using an alternative
hull distance algorithm, AHISD [15], to further demonstrate
the general applicability of the proposed approach.

C. Features and metric learning algorithms and data normal-
ization

Our approach is feature- and metric-agnostic and can be
applied to any combination of existing feature extraction

and metric learning algorithms. To this end, we consider a
wide variety of algorithms that have become popular in the
re-id community over the last four years. Specifically, we
consider 8 existing feature extraction and 10 existing metric
learning algorithms, noted in Table I, representing methods
published through CVPR 2016. In addition, we also consider
the Lo metric, where we do not perform any feature space
transformation and work in the original feature space. A
detailed description of these algorithms can be found in the
noted references as well as the recent systematic study by
Karanam et al. [34]. For computational efficiency, we reduce
the dimensionality of each feature space to 100 dimensions
using the principal components analysis (PCA) algorithm.
Subsequently, we employ the data normalization technique
suggested in [48]. Specifically, we divide each component of
the feature vector by its largest value across the training set,
following which each feature vector is lo-normalized.

D. Evaluation framework

As noted in the previous section, our proposed approach,
which we name discriminative representations of affine hulls
(DRAH), is independent of the feature space we work in
and can be used to improve the performance of existing
metric learning methods. To this end, we adopt the following
evaluation framework: given a certain feature space, we first
consider the average feature vector of the available multi-shot
data and learn a transformed feature space, which we then
use to compute the re-id performance. We name this approach
AVER in all subsequent discussion. We then use our approach,
DRAH, to model data as affine hulls, find closest points on
them, and learn a transformed feature space using these closest
points, which we then use to compute the re-id performance.

E. Results and discussion

We first evaluate the impact of modeling data as affine hulls
in the absence of any metric learning. To this end, in AVER,
we use the Lo distance to rank gallery candidates. In DRAH,
we construct affine hulls in the originally computed feature
spaces, following which we use the L, distance between these
pairs of closest points to rank gallery candidates. The rank-1
results of this experiment are shown in Table II.

Here, we also present some qualitative results comparing the
performance of AVER and DRAH. To this end, we use GOG
as the feature and the L, distance as the ranking algorithm
to rank gallery candidates. In Figure 4, we show one example
from each of the four test datasets, directly comparing the
ranking performance between AVER and DRAH.

We further demonstrate the efficacy of our proposed ap-
proach in the context of several metric learning algorithms.
The rank-1 results of this experiment are shown in Tables III
through VI

As can be noted from the results in these cases, modeling
data as affine hulls is an effective strategy in dealing with the
multi-shot aspect of the data, with DRAH generally giving
better performance than AVER regardless of the feature space.
We see much clearer trends in the case involving metric
learning when compared to that without metric learning, with



TABLE I
EVALUATED (A) FEATURE EXTRACTION AND (B) METRIC LEARNING METHODS.
Feature Year Metric Year
ELF [18] ECCV 08 Lo -
LDFV [20] ECCVW 12 FDA [28] AE 1936
AlexNet [49] | NIPS 12 MFA [51] PAMI 07
gBiCov [50] | BMVC 12 ITML [30] ICML 07
SDC [5] CVPR 13 LMNN [31] JMLR 08
HistLBP [6] ECCV 14 PCCA [12] CVPR 12
LOMO [22] CVPR 15 KISSME [13] | CVPR 12
GOG [23] CVPR 16 LFDA [52] CVPR 13
kMFA [6] ECCV 14
kLFDA [6] ECCV 14
XQDA [22] ICCV 15

(@) (b)

Ml AVER

rank=10
SAIVT-58
DRAH

rank=1

AVER

rank=3

SAIVT-38

DRAH
rank=1

AVER

rank=11

iLIDS-VID
DRAH

rank=5

AVER

rank=3

PRID 2011
DRAH

rank=1

Fig. 4. Qualitative examples from each of the four test datasets to illustrate the impact of the proposed approach. For each dataset, we show two ranked gallery
lists for a certain probe candidate. One list corresponds to using the traditional feature averaging scheme whereas the other list corresponds to the proposed
approach. In each case, we see that the person of interest is ranked higher in the list corresponding to the proposed approach, DRAH, when compared to the
traditional approach, AVER.



TABLE 11
AVER vs. DRAH IN THE ABSENCE OF ANY METRIC LEARNING.
Metric SAIVT-58 SAIVT-38 iLIDS-VID PRID
Rank AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH
ELF 11.1 24.7 19.3 34.8 10.5 14.4 16.3 23.5
LDFV 10.1 14.3 29.3 37.6 8.3 9.2 16.3 20.0
AlexNet | 27.4 38.6 67.9 73.5 16.9 22.8 35.2 42.3
gBiCov 18.7 313 39.7 52.9 7.8 12.5 44.3 47.8
SDC 104 10.3 29.4 36.0 9.3 11.9 21.2 27.1
histLBP | 5.0 7.1 23.2 25.6 7.2 8.9 17.4 22.7
LOMO 29.9 45.7 47.5 65.6 17.7 26.9 50.7 48.1
GOG 44.7 53.9 76.0 82.8 29.6 35.1 60.8 64.0
TABLE III
AVER vs. DRAH WITH METRIC LEARNING: RESULTS ON THE SAIVT-58 DATASET.
Metric FDA MFA ITML LMNN PCCA KISSME LFDA kMFA KLFDA XQDA
Rank AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH
ELF 21.1 414 13.7 20.1 27.6 36.7 17.7 337 28.7 319 229 433 22.1 43.3 233 40.9 29.1 51.0 28.1 331
LDFV 26.7 34.0 13.4 134 28.7 357 19 28.7 29.9 33.0 25.7 35.1 26.4 349 20.1 35.6 28.6 49.0 33 34.6
AlexNet | 29.6 46.7 259 294 339 439 28.9 41.9 299 37.6 29.9 454 30.7 45.7 19 313 31.6 63.9 344 384
gBiCov 19.4 32.0 20 28.9 254 353 24.1 30.0 229 27.7 19.3 32.1 19.4 320 27.6 49.0 26 55.7 24.6 25.7
SDC 18.7 223 10.0 11.1 23.7 22.6 144 19.3 21.7 25.7 18.0 22.1 18.9 22.6 18.3 32.6 25.7 41.6 23.0 223
histLBP 14.4 20.0 6.3 4.6 18.4 239 8.6 15 18.9 204 15.7 214 14.7 20.0 12.6 26.6 19.9 33.0 19.3 21.6
LOMO 45.1 60.7 29.1 343 453 55.6 349 45.9 479 524 44.0 59.7 43.7 60.6 24.4 46.4 46.3 59.0 50 56.6
GOG 53.4 66.7 43.6 45.7 57 66.3 49.3 53.6 52.7 594 523 66.1 543 65.7 26 53.6 51.9 61.6 56.7 62.9
TABLE IV
AVER vs. DRAH WITH METRIC LEARNING: RESULTS ON THE SAIVT-38 DATASET.
Metric FDA MFA ITML LMNN PCCA KISSME LFDA kMFA KLFDA XQDA
Rank AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH
ELF 332 50.0 18.2 29.0 38.7 49.9 26.2 36.9 37.4 43.8 335 50.1 349 50.3 229 39.7 39.6 593 38.4 42.1
LDFV 53.8 584 315 31.8 534 56.5 40.7 413 49.0 46.3 535 57.8 56.2 59.4 36.3 33.7 52.4 674 54.4 48.5
AlexNet | 74.4 824 58.8 64.6 75.6 80.3 59.6 65.0 62.9 70.0 74.6 82.6 74.0 82.1 42.1 72.5 68.2 87.8 69.0 67.6
gBiCov 48.1 59.9 40.3 48.2 50.4 61.9 443 51.0 429 49.1 479 59.7 48.1 59.9 429 63.1 47.6 76.3 46.8 449
SDC 45.6 54.1 299 30.9 51.5 522 36.3 40.1 47.6 50.0 46.6 55.7 44.4 543 335 47.4 50.6 68.5 51.0 46.6
histLBP | 36.2 50.4 20.9 19.3 404 45.7 26.6 32.6 36.0 41.9 353 51.8 36.5 51.2 25.6 424 425 62.6 424 41.8
LOMO 70.6 80.9 419 544 68.8 73.7 52.6 58.1 67.9 71.0 68.1 78.5 68.7 78.7 39.7 61.9 68.5 82.2 68.5 67.4
GOG 85.4 91.0 70.6 75.9 85.4 89.7 72.8 76.2 81.9 85.0 85.4 90.9 84.3 90.6 62.4 83.7 86.0 92.1 86.0 82.8

DRAH giving better performance when compared to AVER
in most feature-metric combinations. There seem to be a few
exceptions, which also help complement the structure of the
image data in the datasets used in this work. In particular, we
observe these exceptions in a few combinations for the SAIVT-
38 and PRID datasets, partly due to the fact that, relative to
the other datasets, the variations across the available images
for each person are not as pronounced, as noted in Karanam
et al. [34]. This results in certain features producing closely

clustered feature sets for which modeling data as affine hulls
does not result in the desired benefit. Furthermore, the figures
in the metric learning case, shown in Tables III through VI,
are generally much higher when compared to those in Table II,
suggest that modeling data as affine hulls and directly com-
puting the distance between the closest points on these affine
hulls is alone not sufficient to get good performance because
this would be a purely unsupervised, suboptimal approach.
Learning discriminative representations of these affine hulls



TABLE V
AVER vSs. DRAH WITH METRIC LEARNING: RESULTS ON THE ILIDS-VID DATASET.

Metric FDA MFA ITML LMNN PCCA KISSME LFDA kMFA kLFDA XQDA

Rank AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH
ELF 16.7 255 11.1 20.2 20.2 224 23.7 321 182 253 119 16.3 159 259 16.5 60.1 13.1 53.9 232 26.1
LDFV 21.3 26.7 134 20.3 20.1 24.5 24.5 30.5 255 29.2 16.7 18.3 215 26.2 20.1 58.3 18.7 54.4 28.1 294
AlexNet | 21.5 274 16.0 26.1 19.5 23.0 299 38.5 224 253 123 14.6 20.8 277 259 60.9 18.7 43.2 278 274
gBiCov | 8.1 13.7 72 14.1 123 18.9 16.5 25.8 14.7 20.9 3.7 6.6 8.1 13.7 11.5 62.5 8.2 60.4 13.1 13.7
SDC 16.3 221 12.1 17.2 15.0 16.8 215 26.3 18.2 21.2 12,5 14.1 18.4 225 16.5 56.3 15.8 53.5 21.6 219
histLBP | 20.4 26.9 13.1 18.0 18.7 21.5 255 273 24.1 26.3 16.4 17.3 20.4 259 18.3 54.2 18.5 49.3 26 28.6
LOMO 36.7 42.6 26.0 34.0 30.5 36.0 44.1 50.7 329 39.7 253 26.1 36.8 43.2 379 61.7 32.1 455 42.3 43.2
GOG 40.6 49.0 304 423 41.0 45.2 47.1 56.6 375 458 29.2 338 40.4 48.7 435 53.7 37.0 64.0 45.7 49.2

TABLE VI
AVER vS. DRAH WITH METRIC LEARNING: RESULTS ON THE PRID DATASET.

Metric FDA MFA ITML LMNN PCCA KISSME LFDA kMFA kLFDA XQDA

Rank AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH | AVER | DRAH
ELF 19.3 20.1 16.5 24.8 25.8 338 315 40.7 285 31.6 21.1 253 19.2 224 28.1 58.9 253 53.7 31.6 319
LDFV 322 32.8 24.0 344 34.6 320 40.2 42.4 389 45.6 33.8 15.6 319 315 42.8 65.3 385 60.7 45.1 43.8
AlexNet | 27.2 30.6 312 39.9 36.7 46.2 442 49.0 30.2 36.9 30.4 333 283 319 41.6 76.7 375 72.6 40.2 42.6
gBiCov | 22.0 29.4 349 42.8 29 46.9 513 58.4 36.5 47.1 244 34.2 22.0 294 48.3 83.1 399 80.3 389 39.0
SDC 239 249 19.1 254 30.6 34.7 353 39.9 335 373 273 294 23.8 26.1 315 61.1 29.1 55.7 36.2 35.6
histLBP | 21.9 225 20.2 25.1 249 304 289 38.2 30.4 32.0 233 249 19.9 21.2 303 60.3 29.4 58.7 32.1 334
LOMO 58.1 57.8 48.0 54.7 61.6 62.6 68.5 71.3 64.3 70.3 61.3 64.3 574 59.7 65.1 75.5 67.3 87.1 70.7 70.7
GOG 61.6 62.8 60.1 67.9 67.2 71.0 71.5 753 61.1 68.1 67.1 69.2 61.2 61.9 70.6 79.8 70.8 88.7 75.5 74.0

using metric learning algorithms, a key theme of the approach
proposed in this paper, is critical.

Finally, we summarize the results in Tables II through VI
using two CMC curves for each dataset, shown in Figure 5.
To this end, for each dataset, we compute the average perfor-
mance across all the evaluated feature-metric combinations.
We note that DRAH gives consistently better performance
when compared to AVER, resulting in a normalized area under
the CMC curve improvement of 3.5, 1.7, 5.8, and 1.7 and an
average rank-1 improvement of 9.9%, 8.1%, 10.2%, and 8.3%
on the SAIVT-58, SAIVT-38, iLIDS-VID, and PRID datasets
respectively. The relatively higher performance improvement
observed in the case of iLIDS-VID and SAIVT-58 is in line
with the way images in these datasets are captured. As noted
in Karanam et al. [34], iLIDS-VID and SAIVT-58 suffer from
a higher degree of viewpoint and illumination variations when
compared to the other datasets. Therefore, as noted earlier, the
proposed approach is an effective strategy to deal with such
multi-shot feature sets.

While the results discussed above were generated using
RNP as the hull distance algorithm, our proposed approach
is equally applicable to other hull distance algorithms. To
substantiate this point, we repeated all the above experiments
using an alternative hull distance algorithm, AHISD [15],
using the same evaluation protocols and combinations of
features/metric learning algorithms. The average CMC curves
obtained are shown in Figure 6, where we observe an average
rank-1 improvement of 5.5%, 1.6%, 4.8%, and 1.2% on

the SAIVT-58, SAIVT-38, iLIDS-VID, and PRID datasets

respectively with DRAH over AVER.

F. Comparison with the state of the art

Finally, we compare the performance of the proposed ap-
proach with the state of the art in multi-shot re-id. As of
ECCV 2016, the best reported rank-1 results on the iLIDS-
VID and PRID datasets are 58.0% and 77.3%, achieved using
a recurrent neural network (RNN) [25] and a convolutional
neural network (CNN) [24] respectively. Our approach, with
GOG [23] as the feature and kLFDA [6] as the metric
learning algorithm, achieves a rank-1 performance of 64.0%
and 88.7%, representing a substantial improvement of 6.0%
and 11.4% respectively. On the SAIVT-38 and SAIVT-58
datasets, our approach, again with GOG as the feature space,
results in a rank-1 performance improvement of 6.0% and
9.7% respectively over the best performing combination of
GOG and XQDA [22] and GOG and ITML [30] respectively.
These results are summarized in Tables VII and VIII.

These results suggest that using the pair of closest points
instead of the average points is an effective strategy to deal
with the multi-shot aspect of multi-shot person re-id. While
average points are sensitive to noise and outliers, pairs of
closest points better characterize set-to-set similarity of feature
sets. Furthermore, as noted above and in Section IV-E, we
achieve better performance by learning representations of these
points using discriminative distance metrics and not solely
relying on Euclidean distance. While this is expected with the
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Fig. 5. Evaluating the impact of the DRAH over AVER across all the feature-metric algorithm combinations with the RNP hull distance algorithm.

added supervision in the metric learning case, these results also
suggest that pairs of closest points provide for better training
data for the metric learning algorithms, resulting in DRAH
giving improved performance over AVER.

V. CONCLUSIONS AND FUTURE WORK

We advocated for modeling the multi-shot data in multi-
shot person re-id using affine hulls, and demonstrated that
such a data modeling scheme can improve the performance of
existing metric learning methods that use the average feature
vector as the data exemplar. Furthermore, we demonstrated
substantial improvements over the existing state of the art on
three popular multi-shot re-id datasets.

A promising future research direction in the context of the
proposed method would be to integrate multi-shot data mod-
eling and ranking with metric learning. While most existing
methods treat these two topics separately, developing a unified
metric learning and multi-shot ranking framework that exploits
the several aspects of multi-shot data can potentially lead to
further performance gains. For instance, borrowing ideas from
research in spatio-temporal feature learning [53], [54] would

be a natural next step in developing such unified algorithms.
Additionally, such multi-shot ranking and learning techniques
can be integrated with representative sample selection schemes
[55], [56], developing algorithms that can be used to select
most discriminative fragments from the available multi-shot
data for ranking gallery candidates.

We conclude with a discussion on scenarios where the
proposed approach might fail and potential solutions to tackle
the problem. In scenarios that enforce a dress code on people,
appearance features computed using any of the feature extrac-
tion algorithms discussed here will result in a feature space
where most gallery candidates will look alike. In scenarios
that involve high crowd density, the person images captured
by cameras will be affected by occlusions and background
distractions. In this case, the feature space of the candidates
will be noisy. In such scenarios, the proposed approach as well
as the traditional approach will not give satisfactory results.
To mitigate these problems, a possible solution would be to
adopt a multi-modal approach to describe the appearance of
person images. For instance, in the scenario involving a dress
code, person faces can be detected using a face detector [57]
and this information can be fused into the existing appearance
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TABLE VII
COMPARISON WITH THE BEST PUBLISHED RESULTS TO DATE: RESULTS ON THE PRID AND ILIDS-VID DATASETS.

Dataset PRID 2011 iLIDS-VID

Rank 1 5 10 20 1 5 10 20

CNN+XQDA (ECCV 2016, [24]) | 77.3 | 93.5 | 95.7 | 99.3 | 53.0 | 81.4 | 90.1 | 95.1

RNN (CVPR 2016, [25]) 70.0 | 90.0 | 95.0 | 97.0 | 58.0 | 84.0 | 91.0 | 96.0
DRAH 88.7 | 97.9 | 989 | 99.7 | 64.0 | 86.0 | 91.7 | 96.3
TABLE VIII

COMPARISON WITH THE BEST PUBLISHED RESULTS TO DATE: RESULTS ON THE SAIVT-38 AND SAIVT-58 DATASETS.

Dataset SAIVT-38 SAIVT-58

Rank 1 5 10 20 1 5 10 20

GOG (CVPR 2016, [23]))+ITML [30] 854 | 985 | 99.7 | 999 | 57.0 | 81.0 | 89.9 | 94.1

GOG (CVPR 2016, [23])+XQDA [22] | 86.0 | 98.8 | 100 | 100 | 56.7 | 83.7 | 92.1 | 96.1

DRAH 92.0 | 99.7 | 100 | 100 | 66.7 | 87.4 | 92.3 | 959




modeling paradigm. In the scenario involving occlusions and
background distractions, we can use person motion and gait
information [58] to construct the feature space. Once we have
a well-represented feature space, the algorithm proposed in
this paper can readily be applied in conjunction with metric
learning algorithms.
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