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Abstract—Over the past ten years, human re-identification has
received increased attention from the computer vision research
community. However, for the most part, these research papers
are divorced from the context of how such algorithms would be
used in a real-world system. This paper describes the unique
opportunity our group of academic researchers had to design
and deploy a human re-identification system in a demanding
real-world environment: a busy airport. The system had to be
designed from the ground up, including robust modules for real-
time human detection and tracking, a distributed, low-latency
software architecture, and a front-end user interface designed for
a specific scenario. None of these issues are typically addressed
in re-identification research papers, but all are critical for an
effective system that end users would actually be willing to adopt.
We detail the challenges of the real-world airport environment,
the computer vision algorithms underlying our human detection
and re-identification algorithms, our robust software architecture,
and the ground-truthing system required to provide training and
validation data for the algorithms. Our initial results show that
despite the challenges and constraints of the airport environment,
the proposed system achieves very good performance while
operating in real time.

Index Terms—Re-identification, camera network, video analyt-
ics.

I. INTRODUCTION

LARGE networks of cameras are ubiquitous in urban
life, especially in densely populated environments such

as airports, train stations, and sports arenas. For cost and
practicality, most cameras in such networks are widely spaced,
so that their fields of view are non-overlapping. Automatically
matching objects, especially humans, that re-appear across
different cameras in such networks is a key research question
in computer vision (e.g., [1]–[3]).

In recent years, the fundamental research question has been
distilled into the human re-identification or re-id problem.
That is, given a cropped rectangle of pixels representing a
human in one view, a re-id algorithm produces a similarity
score for each candidate in a gallery of similar cropped human
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rectangles from a second view. Computer vision research
in re-id largely focuses on two issues. The first is feature
selection [4]–[8], i.e., determining effective ways to extract
representative information from each cropped rectangle to
produce descriptors. The second is metric learning [9]–[14],
i.e., determining effective ways to compare descriptors from
different viewpoints. Feature selection and metric learning
should work together so that images of the same person from
different points of view yield high similarity while images
of different people yield low similarity. Re-id algorithms are
typically validated on benchmarking datasets agreed upon by
the academic community, notably the VIPeR [5], ETHZ [6],
and i-LIDS MCTS [15] datasets.

However, feature selection and metric learning only repre-
sent two aspects of creating an effective real-world re-id al-
gorithm. In practice, a re-id system must be fully autonomous
from the point that an end user draws a rectangle around a
person of interest to the point that candidates are presented to
them. This implies that the system must automatically detect
and track humans in the field of view of all cameras with speed
and accuracy. The candidates in the re-id gallery in practice
are thus automatically generated and are typically much lower-
quality than the hand-curated gallery of a benchmark dataset;
in fact, many candidate rectangles may not even represent
humans! Furthermore, in a typical branching camera network,
the camera in which the target reappears is unknown, so there
are actually several separate galleries to search. The timing
of the reappearance is also unknown; the galleries will be
constantly updated with new candidates over the course of
minutes or hours instead of presented to the algorithm all at
once.

Additionally, the deployment of a re-id algorithm in a
real-world environment faces many practical constraints not
typically encountered in an academic research lab. In contrast
to recently-purchased, high-quality digital cameras, a legacy
surveillance system is likely to contain low-quality, perhaps
even analog, cameras whose positions and orientations cannot
be altered to improve performance. The video data collected
by cameras in the network is likely to be transmitted to secure
servers over limited-bandwidth links, and these servers are
likely to have limited storage since many cameras’ data must
be compressed and archived. These servers are also likely
to be closed off from the internet, so that any algorithm
upgrades and testing must be physically done on-site. Since
the algorithm must run autonomously, a robust, crash-proof
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software architecture is required that takes advantage of any
possible computational advantage (e.g., parallel or distributed
processing) while still guaranteeing low latency. On the front
end, the algorithm must run in real time, updating a ranked list
of matching candidates as fast as they appear in each potential
camera, and the results must be presented to the user in an
easy-to-use, non-technical interface.

This paper describes the unique opportunity our team had to
design and deploy a real-world re-identification algorithm in
an airport, in which we had to surmount the above challenges.
Our testbed consisted of three cameras, one located just after a
security checkpoint in which the subject of interest is “tagged”,
and two located at the entrances to different concourses, in
one of which the subject will re-appear. The entire system
operates using the airport’s network infrastructure in real time.
We begin by describing important practical considerations of
the airport environment in Section II. Section III describes
our solutions to the human detection and tracking, feature
selection, and metric learning problems for re-id. These al-
gorithms are implemented in a modular, low-latency software
architecture based on the open standard Data Distribution Ser-
vice (DDS) middleware [16], described in Section IV. To train
the computer vision algorithms for the airport cameras and
validate our results on stored data, we undertook a substantial
semi-automated ground-truthing effort, discussed in Section V.
Section VI reports experimental results from the on-site system
deployed at our airport testbed, as well as results from offline
data that validate the choice of the algorithm components.
Finally, Section VII concludes the paper with discussion and
plans for future work. This paper extends an earlier version of
our work presented in Li et al. [17].

II. DESIGN OF A “TAG AND TRACK” SYSTEM FOR THE
REAL WORLD

In this section we present an overview of the real-world
challenges we faced when designing and implementing a “tag
and track” surveillance system for a medium-size airport in
the United States. The system was designed to assist Trans-
portation Security Administration officers (TSOs) monitoring
the Cleveland Hopkins International Airport (CLE, Cleveland,
Ohio, USA), while using their existing surveillance camera
network.

The specifications for the system demanded the ability to
manually “tag” a person of interest in a video feed, and
automatically track the tagged individual across the camera
network, in real time. Thus, the system was designed with a
front-end user interface to allow a TSO to select a video feed
and tag an individual. In addition, the system was designed to
be able to detect possible candidates in the remaining views,
track and compare them against the tag, and present the results
to the TSO in a visual interface in a timely fashion.

The design of the “tag and track” system incorporates sev-
eral modules addressing challenging problems in computer vi-
sion, such as human detection, tracking, and re-identification.
These modules need to work in parallel and communicate
with each other, reliably, in real time, and use data from
the existing surveillance video network. As described next,

these requirements imposed additional challenges that had to
be addressed while designing, implementing, deploying and
testing the system at the CLE airport.

A. Data Transfer, Storage, and Collection

Figure 1 illustrates a high-level overview of the “tag and
track” system, showing the data flow across its components.
An important characteristic of airport security systems is
that, unlike most traditional surveillance networks, the data
must be always transmitted through secure high-bandwidth
networks. As a result, the whole system needs to work in a
local Ethernet with no access to the outside Internet. That is,
only workstations connected to this local Ethernet are allowed
access to the video data. The impact of this fact on the
design process of the system was a very significant increase
in cost, both in terms of time and dollars. Since this policy
precludes remote debugging and testing of the software, the
design cycle consisted of first collecting small sets of data
on-site, developing and testing software in the lab using these
recorded datasets, and making trips to CLE to install and test
the software on-site. Furthermore, due to the sensitive nature
of the data, all recorded data had to be first approved by the
airport authorities before it could be taken to the labs, severely
limiting the amount of data that could be collected for our
purposes.
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Fig. 1. High-level system design of our airport human re-identification
solution.

The camera network at the CLE airport, like most real-world
networks, is equipped with a heterogeneous mix of analog
and digital cameras. Indeed, most of the existing infrastructure
consists of analog cameras, necessitating the installation of
video encoders to convert their feeds to the H.264 standard
with a 704 × 408 resolution at 29.97 frames per second. In
particular, we used Bosch VIP X1 XF video encoders for this
purpose.

All the data and metadata generated by the Bosch encoders
and digital cameras is transmitted through the secure network
to the analytic software modules and to an auxiliary research
Network Video Recorder application that runs a data server to
store encoded video data, which is overwritten approximately
every week. In addition, to facilitate systematic performance
evaluation, every tenth frame is recorded at the processing
workstation. As mentioned above, all the recorded data and
events are reviewed by security officers before they can be
brought back to the lab for analysis. Finally, the core of the
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system consists of the video analytic software developed to
acquire video feeds directly from the encoders and to perform
the tracking and re-identification tasks in real time.

B. Poor Data Quality and Challenging Environments

Real-world surveillance data is more challenging than re-
search oriented databases used to benchmark algorithms for
tracking and/or re-identification. Unfortunately, many of the
legacy analog cameras in the airport network provide poor
quality video, corrupted by heavy noise and often out of
focus, as illustrated in the sample images shown in Figure
2. Additionally, illumination conditions can vary significantly
from camera to camera and even for the same camera (near
windows) due to the time of day or weather conditions. Other
factors that we found particularly challenging include that in
many places the floor is highly reflective, making the problem
of foreground detection harder, and that the videos show
periodic temporal jitter that needs to be taken into account
during tracking [18].

Finally, airports can be crowded, making the tasks of human
detection and tracking during heavy traffic even harder. In
particular, maintaining accurate trajectories for each person in
this type of environment can be very challenging. We discuss
our strategies to address these challenges in Section III.

Fig. 2. Sample images from airport camera videos.

C. Camera Positioning and Traffic Flow

Surveillance cameras used in large public spaces are widely
spatially distributed, so the network often has large “blind
regions”. Moreover, unlike cameras used in standard re-id
databases, airport cameras are often oriented at sharp angles
to the floor (∼45◦).

Thus, successfully tracking a target across the airport
network hinges on solving the challenging problem of re-
identifying a target using images with severe perspective dis-
tortion and taken from very different viewpoints, as illustrated
in Figure 2. This problem is complicated even further by
the fact that the traffic flow of humans in an airport is hard
to predict with high certainty. In an airport, there are no
predefined routes since there are multiple alternatives to go

from one location to another. Moreover, people can retrace
their steps, walk in or out through exits not covered by the
camera network, spend long periods of time in shopping or
eating areas, or even change clothing while out of the view of
the network. All of these factors make it difficult to reliably
use appearance or transit time models in this scenario.

III. ALGORITHM OVERVIEW

In this section, we describe the key computer vision aspects
of our deployed system: human detection and tracking, feature
selection, and descriptor comparison for re-identification. Fig-
ure 3 illustrates the main steps of the process.

Fig. 3. Block diagram outlining our human re-identification algorithm.

A. Detection and Tracking

The first step is using mixtures of Gaussians (MoG) [19]
to detect foreground pixels and group them into blobs; the
bounding boxes of these blobs define regions of interest
(ROIs). ROIs with small sizes or impossible locations are
discarded. Each viable ROI is input to the aggregated channel
features human detector of Dollár et al. [20], as illustrated in
Figure 4. This detector uses a boosted decision tree classifier to
rapidly generate human candidates. We found it was important
to train a specific classifier for each camera in the network
to obtain good results, which was accomplished using person
images from each camera (obtained using the ground-truthing
tool in Section V) and randomly sampled background images
(to create negative samples). The human detection runs at
several scales within each ROI, resulting in a set of candidate
detections of different sizes within each foreground blob. Since
our system must run in real time, it was critical to restrict the
candidate search to only viable ROIs, resulting in a human
detector that runs at about 100 frames per second.

Our approach to tracking the detected human candidates
is twofold. First, we perform tracking-by-detection in each
frame as described above. Second, another set of candidate
bounding boxes is generated in each frame by predicting the
bounding box locations of tracked humans from the previous
frame. This prediction is made by detecting low-level FAST
corner features [21] in each previous bounding box, removing
features estimated to belong to the background [18], estimating
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Fig. 4. Human detection example using MoG foreground detection to reduce
computational complexity.

the motion vector for each feature with the KLT tracker
[22], and averaging the resulting motion vectors to update the
location of the bounding box in the current frame.

The tracking-by-detection and motion-prediction bounding
boxes are merged at the current frame to produce a final set
of human detections as follows. We compute the intersection
of each tracking-by-detection bounding box with each motion-
prediction bounding box and find the maximum ratio between
the area of intersection and the area of the smaller bounding
box. The new tracking-by-detection box is associated with
the corresponding motion-predicted box if this ratio is above
a predefined threshold (in our experiments, we used 0.8);
otherwise, it is used to initialize a new track. Motion-predicted
bounding boxes not matching any tracking-by-detection box in
the previous frame are retained if both their aspect ratio and
location in the frame are plausible. Figure 5 illustrates the
idea.

Fig. 5. (a) Tracking-by-detection bounding boxes from previous frame.(b)
Predicted bounding boxes using motion vector propagation from the previous
frame (dashed, red) and new tracking-by-detection candidates (solid, green).
(c) Final bounding boxes for current frame created by merging the two
detections.

Overall, the detection and tracking algorithms are tuned to
produce a large number of human candidates in each camera
for the subsequent re-id algorithms; we err on the side of al-
lowing false alarms (i.e., poor detections or inaccurate tracks)
as opposed to tolerating missed detections. This is important
since the re-id algorithm can never recover if the tagged person
of interest is missed in a subsequent camera, while we assume
that occluded or poor-quality human detections will never rise

to the top of the rank-ordered re-id candidate list.
We note that while some re-id algorithms describe humans

in terms of body-based models [23] or gait analysis [24],
rectangular bounding boxes are the standard method for de-
scribing people for re-id, and are computationally lightweight.
Also, while several sophisticated human and object tracking
algorithms exist [25]–[29], our choice of the KLT tracker is
motivated primarily by its high speed of operation. Real-time
tracking in several cameras simultaneously is critical for the
success of the overall system.

B. Re-identification

The re-identification process has three key steps. First, a
feature descriptor needs to be extracted from each candidate
detection. Second, given a pair of descriptors Xtarget and Xj

(one from the tagged target and the other from the jth can-
didate detection), we must compute an appropriate similarity
score

sj = f(Xtarget,Xj) (1)

to compare them. Finally, by ranking the similarity scores
{sj , j = 1, . . . , n} in each frame, an ordered list of “preferred”
candidates to be shown to the user is generated.

Re-id researchers have proposed several different schemes
for feature extraction. An early and popular scheme was
proposed by Gray and Tao [5], in which each rectangle was
divided into several horizontal stripes and color and texture
histograms were extracted from each stripe. Subsequently,
Bazzani et al. [4] proposed an accumulation of local fea-
tures that model the overall chromatic content, the spatial
arrangement of color, and the recurrence of textured patterns.
These features were then weighted by taking appropriate
symmetry and asymmetry information into account. Ma et al.
[30] encoded descriptors comprised of pixel spatial location,
intensity, and gradient information into Fisher vectors [31]
and demonstrated impressive performance gains. Zhao et al.
[32] densely divided each image into several patches and
extracted color histograms and SIFT [33] features from each
patch, producing so-called dense features. Recently, Liao et
al. [34] proposed a very powerful feature representation based
on locally maximal horizontal occurrence of color and texture
information that achieved state of the art results.

In our work, we adopted the approach of Gray and Tao
[5], which is (1) particularly suitable for the low-resolution
candidate rectangles generated in the airport system and (2)
enables features to be computed very quickly in an online
fashion. Furthermore, color and texture histograms have also
been empirically shown to provide good input to metric
learning [35], [36].

Following this approach, each rectangle is divided into
6 horizontal strips. Inside each strip, 16-bin histograms are
computed over 8 color channels (RGB, HSV, and CbCr) and
19 texture channels (including the response of 13 Schmid
filters and 6 Gabor filters). The histograms are concatenated
to form a d−dimensional feature vector for each candidate,
where d = 2592.

Given a track of images for the target and each candidate,
we extract features for each image as described above. Let
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xit ∈ Rd, i = 1, · · · , n and xkj ∈ Rd, k = 1, · · · ,m denote
the n feature vectors of the target and the m feature vectors
of the jth candidate, respectively. We then project each of
these feature vectors to a learned discriminative space using
a projection matrix P ∈ Rd̂×d. Specifically, x̂it = Pxit and
x̂kj = Pxkj . We then determine Xtarget ∈ Rd̂ and Xj ∈ Rd̂ as
the mean feature vector in the projected feature space for the
target and each candidate. Specifically,

Xtarget =
1

n

n∑
i=1

x̂it

Xj =
1

m

m∑
k=1

x̂kj

Finally, the similarity score sj is computed as

sj = w>|Xtarget −Xj | (2)

where w ∈ Rd̂ corresponds to a metric learned to compensate
for the differences between the target camera and the candidate
camera.

Next, we discuss some prior work in metric learning fol-
lowed by the procedure we employed to learn the feature space
projection matrix P and the weight vector w.

Like feature extraction, metric learning has also been an
active area of research in the re-identification community. The
goal of metric learning is to learn a feature space where
feature vectors of images belonging to the same person in
different cameras stay close whereas those corresponding to
different people are far apart. This goal is typically translated
to a mathematical formulation involving pairwise constraints
on the feature vectors. Prosser et al. [12] used the above
pairwise constraints to formulate a RankSVM model, learning
a weight vector that was used to rank gallery candidates.
Mignon and Jurie [10] employed a generalized logistic loss
minimization formulation while enforcing pairwise similarity
and dissimilarity constraints. Zheng et al. [37] formulated a
relative distance comparison problem and learned the distance
metric using a logistic objective function in a soft margin
framework. Xiong et al. [13] extended some of these popular
algorithms to accommodate the use of the kernel trick. Based
on equivalence constraints, Koestinger et al. [38] proposed to
learn the covariance matrix in Mahalanobis distance directly
from the feature difference between image pairs. Wang et
al. [39] approached the problem from a transfer learning
perspective, learning a discriminative and shared feature space
in a multi-task learning framework. The learned space was
then used to perform re-id in camera views containing little
training data, demonstrating the transferability of the feature
space. Finally, most recently, Liao et al. [34] extended the
above work by projecting features into a discriminant subspace
simultaneously.

In our system, the projection matrix P is learned using
Local Fisher Discriminant Analysis (LFDA), which has shown
promising results for re-id [11]. This choice was primarily
motivated by the real-world nature of our problem. Since
we track each candidate, we have a sequence of images for

each person. The naive way most metric learning methods
discussed above deal with such data is by considering the
average feature vector of all the available data for each person.
However, such feature averaging can result in the loss of
discriminative information available in the image sequence. On
the other hand, LFDA maximizes the between-class scatter of
the data while minimizing the within-class scatter. Intuitively,
this means that all the feature vectors belonging to the same
person are brought close together while the feature vectors of
different people are pushed far apart, which is exactly what
we wish to achieve. Since LFDA does this without the need to
consider the average feature vector, it is particularly suitable
to our problem setting.

Formally, given the mj gallery feature vectors gij , i =
1, · · · ,mj and the nj probe feature vectors pij , i = 1, · · · , nj
of the jth person in the training set, we construct the feature
matrix F =

[
{gij} {pij}

]
. In LFDA, locality preserving

projections [40] are used to ensure that the feature vectors
of each person are close in the transformed space, thereby
preserving the local structure of the data. To this end, we
define an affinity matrix A that captures the closeness of the
feature vectors Fa and Fb, where Fa is the ath column of F.
The k-nearest neighbors rule (k = 7) is used to determine this
closeness. The values of the affinity matrix are defined as

Aab =

{
1 if Fa is close to Fb

0 otherwise

The within-class and between-class scatter matrices are then
defined as

Sw =
1

2

N∑
a,b=1

Aw
ab(Fa − Fb)(Fa − Fb)

>

Sb =
1

2

N∑
a,b=1

Ab
ab(Fa − Fb)(Fa − Fb)

>

where Aw
ab and Ab

ab are defined as

Aw
ab =

{
Aab

nc
if class(Fa) = class(Fb) = c

0 if class(Fa) 6= class(Fb)

Ab
ab =

{
Aab(

1
N −

1
nc
) if class(Fa) = class(Fb) = c

1
N if class(Fa) 6= class(Fb)

where nc denotes the number of available feature vectors for
the person in the training set with index c. Finally, the feature
space transformation matrix P is learned as

P = argmax
P

trace{(P>SwP)−1P>SbP}

After learning the matrix P, we compute the mean fea-
ture vector for each person in the training set as ḡj =
1
nj

∑nj

i=1 Pgij and p̄j =
1
m

∑m
i=1 Ppij .

To learn the weight vector w, we employ the RankSVM
formulation of [12]. The core idea is to minimize the norm of
a vector w that satisfies the following ranking relationship:
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w>(|ḡi− p̄i|− |ḡi− p̄j |) > 0, i, j = 1, 2, . . . ,K and i 6= j

where K is the number of people in the training set. The
RankSVM method learns w by solving the following mini-
mization problem:

arg min
w,ξ

( 12‖w‖
2 + C

K∑
i=1

ξi)

s.t. w>(|ḡi − p̄i| − |ḡi − p̄j |) ≥ 1− ξi, ξi ≥ 0

(3)

where C is a margin trade-off parameter and ξi is a slack
variable.

It should be noted that while the process of learning P and
w is time-consuming, it is done offline. On the other hand, the
on-line re-id process is extremely fast since it only involves a
vector inner product.

IV. SYSTEM ARCHITECTURE

We approached the deployment of our re-identification
algorithms at the airport with several criteria in mind.
• Modular Architecture: The framework must define

high-level functional blocks and the communication
among them to allow the easy and reliable interchange of
functional components as research yields new algorithms
and approaches.

• Real-time Operation: Communication and data transfer
between framework components must not prevent the
real-time operation of the complete system.

• Task-level Parallelism: To perform full functionality
in real time, the system must allow for the framework
components to operate in parallel while ensuring that all
the modules are working synchronously.

• Language-agnostic API: Efficient multi-institutional
collaboration requires accommodating a variety of code
development environments. For example, the framework
must support native and managed processes written in
C++ and C#.

• Real-time Logging: All results must be recorded to allow
for later performance evaluation, without inhibiting real-
time operation.

• Simulated Environment: The framework must have the
ability to simulate deployment using recorded videos
to enable reliability testing and algorithm performance
evaluation prior to actual deployment.

For these reasons, we selected the open standard Data
Distribution Service (DDS) middleware [16] to handle inter-
process communication and guarantee compatibility as new
components are added to the system. DDS is designed for real-
time applications requiring low latency and high throughput.

Although our system uses shared memory exclusively, the
physical transport used by DDS is configured at runtime using
a transport type-agnostic API allowing application components
to be distributed across multiple machines if necessary. To
minimize communication overhead, DDS contains automatic
peer discovery and peer-to-peer data transfer without needing
to run additional message brokers or servers. Custom data
structures are defined using an interface description language

(IDL) that closely resembles C++ class definitions. These
structure definitions correspond to a common data represen-
tation that allows access from many programming languages
including C++, C#, and Java.
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Fig. 6. Block diagram showing participating entities in the publish-subscribe
communication model used by DDS.

DDS uses a loosely-coupled publish-subscribe communi-
cation model. In this model, participating processes contain
objects for publishing (writing) and subscribing to (reading)
data from a global data space managed by DDS (Figure 6).
The global data space is organized into a number of “topics”
defined by a unique pair of name and IDL-defined data type.
To access the global data space, programs merely inform DDS
of the topic name and data types they would like to read and/or
write to; the creation of new topics is handled automatically
by DDS. From a programming perspective, the behavior of
a participant in the publish-subscribe model is independent
of other participants. For example, the process responsible
for publishing video frame data does not need to account for
which or how many other processes are reading the data. DDS
is configured at runtime by reading an XML file containing
Quality of Service (QoS) policies to control aspects of how and
when data is distributed by the middleware. QoS can control
attributes such as the maximum size of global data space or
how much data for each topic can be available to subscribers
to read. These attributes of DDS help ensure reliability as new
components are added while keeping the framework flexible
enough to handle new methods from our research. In addition,
the DDS implementation provides tools for the recording and
playback of DDS communications allowing us to examine
not only the re-id results but any communication within the
framework.

Figure 7 illustrates the DDS architecture corresponding
to the re-identification software deployed the three-camera
system installed at the airport. Each block corresponds to a
separate constantly running process performing the algorithms
described in Section III.

In particular, the processing pipeline contains the following
modules:

1) Candidate Detection: The first module in the pro-
cessing pipeline publishes the single frame locations of
humans detected in the video source.
• Subscribes to: Video frames.
• Publishes: Single frame candidate locations.
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Fig. 7. Block diagram showing the re-id system architecture, including processes for Candidate Detection (green), Candidate Filtering (purple), Feature
Extraction (blue), and Re-Identification (red).

2) Candidate Filtering: This module is used for additional
processing of candidates prior to re-id, such as tracking
or grouping detections known to be the same person.
By subscribing to new target announcements from the
Re-identification module, this module can also act as a
temporal filter for potential candidates.
• Subscribes to: Video frames (optional); Candidates

from Candidate Detection module or other in-
stances of Candidate Filtering module; New target
announcements from the Re-Identification module
(optional).

• Publishes: Candidate and Target locations.
3) Feature Extraction: This module is responsible for

preparing potential candidates and targets for re-id by
calculating a vector of feature values as described in
Section III-B. Since feature extraction is generally the
most computationally intensive task in re-id, it is per-
formed only on the most promising candidates that have
passed the spatial and temporal filtering in the previous
modules.
• Subscribes to: Video frames (optional); Candidates

and targets from Candidate Filtering module.
• Publishes: Candidate and Target locations with

identifying feature vectors.
4) Re-Identification: The last computer vision module is

responsible for generating the final re-id results. It uses
the feature vectors calculated by the previous module

to compare the active target with all candidates from
each camera as described in Section III-B, and provides
a sorted list and difference score for each candidate.
• Subscribes to: Video frames (optional); Candidates

and Targets from Feature Extraction module.
• Publishes: New target announcements; Re-id re-

sults.
5) Graphical User Interface: The final module is respon-

sible for visualizing the re-id results using images of the
target and top candidates as well as any other desired
information regarding candidates and targets (e.g., video
display with candidate bounding boxes). This module
does not publish any data.
• Subscribes to: Video frames; Candidates and Targets

from Feature Extraction module; Re-id results.

V. DATA COLLECTION AND GROUND TRUTH GENERATION

To develop the computer vision algorithms and system
architecture described here, we required a comprehensive
video footage database with high-accuracy ground truth labels
for hypothesis validation, parameter tuning, and performance
evaluation. In particular, we required accurate bounding boxes
for humans in thousands of frames of videos from several
cameras, and when possible, metadata such as gender, clothing
color, motion type, and interactions with others that might be
useful for future analysis.
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One strategy to achieve accurately annotated visual content
is to divide the labeling task into many smaller tasks executed
by a large number of people enlisted through, e.g., crowd-
sourced marketplaces [41], [42]. However, crowdsourcing is
not a viable practice for labeling sensitive, proprietary videos.
Therefore, we opted to employ in-house, specially trained
personnel to generate reliable ground truth. In our case, the
limiting factor is the time required for bounding box delin-
eation, requiring up to 3.5 hours to process one video minute
for a single human without any computational intervention.

For this purpose, we designed a computer-aided ground
truthing system called “Annotation Of Objects In Videos
(ANchOVy)”, a toolbox for cost-effective surveillance footage
labeling. ANchOVy’s unified graphical user interface, shown
in Figure 8, was designed for an ergonomic, low-latency video
labeling workflow and includes features to safeguard against
worker errors (e.g., automated label propagation, continuous
auto-save function, role-based content control).

ANchOVy first automatically extracts short trajectories of
moving objects in the video by using a featureless tracking-
by-detection method [27] implemented on graphics processing
units [43]. Then, the human worker identifies and labels an
object of interest in a highly sparse set of frames. Next, the
missing labels are automatically inferred by connecting the
previously collected short trajectories using Hankel matrices
of the trajectories [28]. The worker inspects the inferred
results and can take corrective actions, which will trigger a
recalculation and update using the added label information.
This procedure is repeated until a satisfactory label quality is
achieved. Finally, the worker assigns a unique global identi-
fication number to each tracked person to facilitate algorithm
design and validation for re-identification, as discussed in
Section VI-A.

VI. EXPERIMENTAL RESULTS

In this section we summarize the training of the system
and report the results of a set of experiments using real-world
airport videos to evaluate the overall re-id performance. For
these experiments, we chose to use video from three cameras
located in the area after the central checkpoint area. Of the
three cameras, one camera (camera A) corresponds to the
central checkpoint area. The other two cameras (cameras B
and C) show views of the hallways heading towards different
concourses. This camera network has an interesting branching
scenario in the sense that people that appear in the view of
camera A can go to either of the two concourses after spending
an indefinite amount of time in the central area. Since camera
A corresponds to the central area, we choose this camera to
tag persons of interest.

A. System Training

Using ANchOVy, we labeled 650 tracks of 188 persons,
each identified by a unique global ID, in multiple image
sequences recorded across CLE’s distributed camera network.
The ground truth labeling process produced tightly cropped
images of humans in every twelfth video frame ranging in
size from 51× 30 to 267× 212 pixels.

The cropped images were then used to train our human
detection and re-identification algorithms. We grouped the
person images based on their camera view to train camera-
specific decision trees for human detection as described in
Section III-A. We also used the ground truth bounding boxes
and global IDs to learn the feature space projection matrix P
and the metric vector w for each of the two camera pairs (A,
B) and (A, C), as described in Section III-B. Using five-fold
cross-validation on these training images, we set the dimension
of the transformed feature space d̂ = 300 for re-id in the
camera pair (A, B) and d̂ = 200 for the camera pair (A, C).

B. User Interface

For the real-time experiments, we had to design a graphical
user interface (GUI) to make it easy to tag persons and
score algorithm performance, illustrated in Figure 9. Figure 9a
shows tagging a person of interest in camera A, Figures 9b and
c show detection and tracking of candidates in cameras B and
C, and Figure 9d shows the final re-identification results that
are presented to the user of the interface. In this particular
example, we note that the person of interest re-appeared in
camera C, and was successfully re-identified at rank 1.

C. Experimental Protocol

To evaluate the performance of the system, we deployed
it at the Cleveland Hopkins International airport and ran
experiments using live video feeds, recording the real-time re-
identification results. In each experiment, a target person was
manually tagged in camera A, and re-identified in cameras B
or C. A sample of 20 such target images is shown in Figure 10.
We set a re-appearance time window of 3 minutes, i.e., we
waited for 3 minutes for the target person to re-appear. We
define a valid experiment as one in which the person of interest
re-appeared within the set time window. An invalid experiment
is one in which the person of interest did not re-appear in either
camera B or camera C within the set time window. In total,
across approximately 15 hours of run-time, we performed 198
experiments, out of which 151 experiments were valid. We use
only the valid experiments to report performance statistics.

D. Performance Statistics

Of the 151 valid experiments, there were 94 cases in which
the person of interest re-appeared in camera B and 57 cases of
re-appearance in camera C. Since the end-users of the system
are unlikely to scroll through pages of candidates, the correct
match should appear within an easily scannable “line-up” for
the system to be usable. To this end, we report the real-time
performance of the system in terms of the rank-n performance
where n ∈ {5, 10}, i.e., the percentage of experiments in
which the tagged person of interest was re-identified within
the top-n rank, and stayed within the top-n rank throughout
the 3-minute time window. The performance in each of the
two re-appearance cameras B and C is tabulated in Table I.
The cumulative match characteristic (CMC) curves for each
of the two re-appearance cameras are shown in Figure 11.

In the on-site experiments, we observed serious compression
artifacts from the video encoder while running the video at 30
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Fig. 8. ANchOVy’s graphical user interface showing humans and their trajectories, spatial labels (full-body, head, and luggage bounding boxes) as well as
other labels.

TABLE I
RE-IDENTIFICATION PERFORMANCE FOR ON-SITE AIRPORT EXPERIMENTS.

Re-id camera # experiments rank-5 rank-10

B 94 58.5% 83.0%

C 57 61.4% 87.7%
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Fig. 11. Cumulative match characteristic (CMC) curves corresponding to the
experiments in Table I.

frames per second. We had to reduce the frame rate to 10
frames per second to avoid this issue. Due to the relatively
low frame rate of the video, there were several cases of
missed detection, i.e., cases in which the tagged person of
interest was not detected upon re-appearance in camera B or
C. Specifically, in camera B, out of the 94 valid experiments,

there were 12 cases in which the person of interest was not
detected. This number was 5 out of 57 valid experiments in
camera C. The low video frame rate also resulted in inaccurate
tracking of the FAST corner features, resulting in person
tracking errors. Furthermore, in some experiments, due to
the high crowd density, large occlusions also contributed to
tracking errors. Since we compute the mean feature vector
for the track of images available for each candidate, errors
in tracking resulted in errors in downstream re-identification.
These issues and their implications are explored in more detail
in the next section.

E. Evaluating system components

A real world system invariably involves errors in the de-
tection and tracking modules. For the detector, these errors
typically involve detections not corresponding to a person,
which we call invalid detections. On the other hand, errors in
the tracking module are more complicated. A person currently
being tracked can be lost for a few frames before being
tracked again. If these two “tracklets” are not associated to
correspond to the same person, a tracking error results. In this
section, we analyze the behavior of the end-to-end system in
the presence and absence of these errors. To this end, we
created an offline evaluation dataset. Specifically, from 15
hours of video data from the same three airport cameras as
above, we randomly extracted 40 5-minute video clips. We ran
each of these video clips through the entire tracking module in
Figure 3. We manually annotated the detections produced by
the detector as being valid or invalid, using the overlap ratio,
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(a) (b)

(c) (d)

Fig. 9. Snapshots from the graphical user interface developed for the airport human re-identification task. (a) Tagging the person of interest in camera A,
(b) Tracking candidates in camera B, (c) Tracking candidates in camera C, (d) Re-identification results displayed to the user (red box indicates correctly
re-identified candidate).

Fig. 10. A sample of 20 targets manually tagged for system performance evaluation.

or =
area(D∩G)
area(D∪G) , where D represents a detected bounding box

and G represents the corresponding ground truth. We define
a detection to be valid if or > 0.5. We also associated any
broken intra-camera tracklets and inter-camera re-appearances
manually. By varying the information in the gallery set, we

defined the following four experimental protocols:

1) Include both valid and invalid detections in the gallery
set; no manual intra-camera association.

2) Include only valid detections in the gallery set; no
manual intra-camera association.
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3) Include both valid and invalid detections in the gallery
set; manual intra-camera association in the gallery cam-
era.

4) Include only valid detections in the gallery set; manual
intra-camera association in the gallery camera.

Since the real-world end-to-end system typically has both
valid and invalid person detections as well as tracking errors,
Protocol 1 above mimics the system we deployed at the airport.
Protocol 2 discards invalid detections, assuming an ideal
person detection algorithm that only outputs valid detections,
thereby helping evaluate the impact of the detector module.
Protocol 3 involves manual tracklet association, helping mimic
an ideal tracking module. This protocol therefore helps eval-
uate the impact of the tracking module. Finally, Protocol 4
assumes both the detector and tracking modules are ideal. This
helps us understand the best-case performance of the system
when all the modules work perfectly.

We performed re-id experiments using all four protocols
discussed above in both Cameras B and C. In all the experi-
ments, we used LFDA to learn the feature space projection and
rankSVM to rank the gallery candidates. The results obtained
are plotted in the CMC curves shown in Figure 12.
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Fig. 12. CMC curves corresponding to experiments on the offline dataset
with the four different evaluation protocols.

As can be seen from the results, Protocol 1 gives the worst
performance at most ranks whereas Protocol 4 gives the best
performance. This is natural, since Protocol 1 involves both
detection and tracking errors. If we assumed ideal detector
and tracking modules (Protocol 4), the best-case performance
of the end-to-end system would be approximately 5.4% and
6.1% higher than the corresponding real-world system at rank-
1 for Cameras B and C, respectively. Comparing the results
of Protocols 1 and 2, invalid detections only have a marginal
effect on the re-id performance, with Protocol 2 resulting in
a rank-1 performance improvement of 1.4% in Camera B
and no improvement in Camera C, respectively. From these
results, we can conclude that the learned feature space plays an
important role in the overall operation of the system. Since the
ideal tracking module decreases the gallery set dramatically,
Protocol 3 has better performance than Protocols 1 and 2.

Next, we also analyzed the impact of the different algo-
rithmic components used in the re-id module. To this end,
we performed experiments on the same data as above with
Protocol 1 and different combinations of the LFDA and
rankSVM metrics. We also compared these metrics with a
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Fig. 13. CMC curves corresponding to experiments on the offline dataset to
evaluate the different components used in the re-identification module.

recently proposed method, XQDA [34], that achieves state-
of-the-art performance. The results obtained are shown in the
CMC curves in Figure 13. We see that using a combination of
LFDA for feature space projection and rankSVM for ranking
candidates results in better performance than the correspond-
ing individual components alone. Furthermore, we see that
while XQDA gives slightly better performance in Camera B,
the combination of LFDA and rankSVM performs much better
in Camera C.

F. Comparison with academic benchmarks

Here, we compare our end-to-end system with how aca-
demic papers approach and evaluate re-id algorithms. Typ-
ically, academic research on re-id is evaluated on VIPeR
[5] and iLIDS-VID [44], standard benchmarking datasets.
The current state of the art at rank-5 for VIPeR is around
75 − 80% [45], [46] and around 57% for iLIDS-VID [44],
while our system was able to achieve a rank-5 performance
of about 60%. While we cannot compare these numbers
directly, we mention several aspects of how performance on
academic benchmarking datasets is different from our real-
world implementation:

1) Time-dependent gallery. In VIPeR and iLIDS-VID, the
gallery subjects are fixed. However, in our case, the goal
is to re-identify a person of interest who may re-appear
in the gallery camera after an indefinite amount of time.
This results in a search over a gallery set that expands
over time.

2) Hand-curated gallery vs. automatically-generated
gallery. In VIPeR and iLIDS-VID, the gallery set
consists of images of persons generated by a ground-
truthing mechanism. However, in our implementation,
the gallery is automatically constructed by using the raw
outputs of human detection and tracking algorithms that
generate candidates in real time.

3) Gallery assumptions. In VIPeR and iLIDS-VID, a key
assumption is that the gallery set contains the person
of interest. However, this assumption does not hold
in our implementation, since (1) the person of interest
may never appear in the camera generating a particular
gallery, and (2) the human detection module may fail to
detect the person even if they do appear.
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We note that the SAIVT-SoftBio dataset [47] was con-
structed from a multi-camera surveillance network that closely
mimics the real-world re-id problem. However, the three issues
raised above hold even in this case. We emphasize that for
a system that works in an end-to-end fashion in real-time,
people must be automatically detected on-the-fly, resulting in
a dynamic gallery set that is constantly adding and removing
candidates, and may not even contain the target. This is a
key difference between real-world operation and academic
benchmark datasets.

G. Suggestions for a practical re-id system

We conclude this section with some suggestions for imple-
menting a practical re-id system in a real-world setting such
as the one described in this paper.
• Focus on the end user. We believe a primary requirement

of a practical re-id system should be ease of use. It is
likely that the end user will not be a computer vision
expert, so a robust crash-resistant software with an easy-
to-use front-end is critical.

• Software architecture. From our experience at the
Cleveland airport, we learned that working with live real-
time camera data can be extremely demanding on the
system and software. The choice of powerful computer
and robust software architecture to drive the system is
critical.

• Good tracking. Based on our offline dataset analysis,
the intra-camera tracking module critically affects per-
formance. A powerful and efficient tracker would help to
reduce the gallery size and improve the accuracy signifi-
cantly. Since false person detections can be eliminated by
the learned metrics in the re-id module, one should use
a more sensitive detector to minimize missed candidates.

• Usability testing. While a computer vision expert can
appreciate the difficulty of the problem, the constraints
on speed, and the performance of our algorithm in the
face of these challenges, airport staff are likely to expect
the system to work perfectly most of the time (e.g.,
99% performance at rank 1!). For future development,
it would be important to engage end-users in the front-
end design of the system from the beginning, in which
the human is in the loop to visually inspect the candidates
generated by the system and provide simple annotations
as to their validity [48]. This would lead to evolving
usability tests to evaluate end-users’ comfort and calibrate
their expectations.

VII. CONCLUSIONS

We discussed several practical challenges we faced while
designing, implementing, deploying and testing a real-time re-
identification system in an airport. In particular, we highlighted
the differences between the re-id problem as it is posed in
academia and how it must be solved in practice, and presented
initial results from our on-site algorithm deployment at the
CLE airport.

To further improve the overall performance of our system,
we plan to integrate several ideas from our “more academic”

research on re-id, such as weighting the features based on
the estimated pose and movement direction of the candidate
prior to descriptor comparison [7], investigating personally-
discriminative feature selection and comparison [7], [49],
adaptively clustering feature vectors obtained from tracking
prior to performing feature space projection [35], learning
discriminative dictionary based representations [36], [50], and
using kernel tricks to improve performance [13].

Our current system requires annotated training data in each
camera to tune the human detectors and the feature space
projection matrices. While it is reasonable to expect that
such training data can be obtained in a critical environment
such as an airport, the human effort to annotate such large
datasets cannot be discounted. To this end, we will also
investigate a transfer learning approach to re-id [39], in which
discriminative metrics can be learned from small amounts of
data in a subset of the camera views and transferred to new
views.

The DDS software architecture has allowed our team to
successfully evaluate many different algorithms and system
configurations quickly. Since security procedures prevent re-
mote access to the airport’s camera network, installation and
debugging of the system requires one or more researchers
to physically visit the airport. The application framework
described here has made these trips very efficient, allowing
quick installation and initial testing of new components with
almost no time needed for on-site debugging. We are currently
tuning the robust DDS software architecture to run for days at
a time and recover from crashes, and creating an intuitive user
interface that allows the user to easily retain possible matches
and reject others. Throughout the project, we have been able
to apply lessons learned from a previous project involving
a system for real-time detection of counterflow through exit
lanes at the same airport [18], [43].

We also plan to further investigate the challenges of re-id
in branching camera networks across very long time scales.
In the scenario described here, one of the two candidate
galleries will never actually contain the tagged person, while
there could be a very long time lag before the gallery for
the correct concourse contains an image of the person. We
plan to investigate temporal and predictive models for person
re-appearances in this challenging scenario, leveraging the
ground-truthing framework from Section V. Separately, we
are investigating a re-id scenario in a light rail environment,
in which persons of interest re-appear after days instead of
minutes, corresponding to a potentially huge gallery. Typical
CMC curves are insufficient to characterize performance in
such systems since they ignore the temporal aspect of the
constantly updating gallery.
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