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Keeping a Pan-Tilt-Zoom Camera Calibrated

Ziyan Wu, Student Member, IEEE, and Richard J. Radke, Senior Member, IEEE

Abstract—Pan-tilt-zoom (PTZ) cameras are pervasive in modern surveillance systems. However, we demonstrate that the (pan, tilt)
coordinates reported by PTZ cameras become inaccurate after many hours of operation, endangering tracking and 3D localization
algorithms that rely on the accuracy of such values. To solve this problem, we propose a complete model for a pan-tilt-zoom camera
that explicitly reflects how focal length and lens distortion vary as a function of zoom scale. We show how the parameters of this model
can be quickly and accurately estimated using a series of simple initialization steps followed by a nonlinear optimization. Our method
requires only ten images to achieve accurate calibration results. Next, we show how the calibration parameters can be maintained using
a one-shot dynamic correction process; this ensures that the camera returns the same field of view every time the user requests a given
(pan, tilt, zoom), even after hundreds of hours of operation. The dynamic calibration algorithm is based on matching the current image
against a stored feature library created at the time the PTZ camera is mounted. We evaluate the calibration and dynamic correction
algorithms on both experimental and real-world datasets, demonstrating the effectiveness of the techniques.

Index Terms—Pan-Tilt-Zoom, Calibration, Dynamic Correction

1 INTRODUCTION

OST modern wide-area camera networks make
M extensive use of pan-tilt-zoom (PTZ) cameras. For
example, a large airport typically contains hundreds, or
even thousands, of cameras, many of which have PTZ
capability. In practice, these cameras move along pre-
determined paths or are controlled by an operator using
a graphical or joystick interface. However, since such
cameras are in constant motion, accumulated errors from
imprecise mechanisms, random noise, and power cycling
render any calibration in absolute world coordinates
useless after many hours of continuous operation. For
example, Figure 1 illustrates an example in which a PTZ
camera is directed to the same absolute (pan, tilt, zoom)
coordinates both before and after 36 hours of continuous
operation. We can see that the images are quite different,
which means that these absolute coordinates are virtu-
ally meaningless in a real-world scenario. Consequently,
in practice, operators direct PTZ cameras almost exclu-
sively in a relative, human-in-the-loop mode, such as
using on-screen arrow keys to manually track a target.
While high-quality PTZ cameras do exist that could
mitigate such issues, most of the PTZ cameras used in
security and surveillance are relatively cheap and suffer
from the mechanical problems described here.

This paper has several contributions. First, we char-
acterize and measure the sources of error in real PTZ
cameras to demonstrate that a non-negligible problem
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Fig. 1. A PTZ camera acquires two images at the same absolute (pan,
tilt, zoom) coordinates both before and after 36 hours of continuous
random operation. (a) The red rectangles indicate the initial images
and the yellow rectangles indicate the final images. (b) Close-ups of
the acquired initial images. (c) Close-ups of the acquired final images.

exists. Second, we propose a complete model for a PTZ
camera in which all internal parameters are a function of
the zoom scale, a number in arbitrary units that defines
the field of view subtended by the camera. Third, we
present a novel method to calibrate the proposed PTZ
camera model. This method requires no information
other than features from the scene, and initial estimates
of all parameters of the model can be computed easily
prior to a non-linear optimization. Finally, we show how
the calibration of a PTZ camera can be automatically
maintained after this initial calibration, so that when a
user directs the camera to given (pan, tilt, zoom) coordi-
nates, the same field of view is always attained. This on-
line maintenance requires no special calibration object,
and instead uses a library of natural features detected
during the initial calibration. As a consequence of our
proposed algorithms, the absolute PTZ coordinates for
a given camera can be trusted to be accurate, leading to
improved performance on important tasks like the 3D
triangulation of a tracked target.
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2 RELATED WORK

Since PTZ cameras are usually used for video surveil-
lance, self-calibration technologies are often adapted,
such as the methods using pure rotation proposed by
de Agapito et al. [5], [6] and Hartley [9]. Davis et al. [4]
proposed an improved model of camera motion in which
pan and tilt are modeled as rotations around arbitrary
axes in space. However, this method relies on a well-
calibrated tracking system.

Sinha and Pollefeys [22] proposed a calibration
method for PTZ cameras that we compare our algorithm
against later in the paper. The camera is first calibrated at
the lowest zoom level and then the intrinsic parameters
are computed for an increasing zoom sequence. Since the
zoom sequence calibration is discrete, piecewise linear
interpolation is used to compute intrinsic parameters
for an arbitrary zoom level. However, only the focal
length is calibrated in this method, and many small
steps may be required to mitigate noise, which makes
the calibration time-consuming.

Sarkis et al. [20] introduced a technique for model-
ing intrinsic parameters as a function of lens settings
based on moving least squares. However, this method
is computationally demanding and may be suscepti-
ble to over-fitting. Ashraf and Foroosh [1] presented
a self-calibration method for PTZ cameras with non-
overlapping fields of view (FOVs). Some calibration
methods for surveillance cameras are based on vanishing
points obtained by extracting parallel lines in the scene
[11], [18].

Lim et al. [15] introduced an image-based model for
camera control by tracking an object with multiple cam-
eras and relating the trajectories in the image plane to
the rotations of the camera.

However, none of these approaches use a complete
model of a PTZ camera. Some ignore lens distortion,
while others assume that lens distortion is estimated at
only one zoom scale and model its variation by a mag-
nification factor [3]. The PTZ camera model proposed
in this paper solves this problem by explicitly posing
models for focal length and lens distortion as a function
of zoom scale and efficiently estimating the parameters
of these models.

Even if a PTZ camera is initially well-calibrated, fre-
quent rotation and zooming over many hours of oper-
ation can make the calibration very inaccurate (Figure
1), which can induce serious error in tracking appli-
cations. This is a critical issue for PTZ-camera-based
video surveillance systems. Song and Tai [23] proposed
a dynamic calibration method for a PTZ camera by
estimating a vanishing point from a set of parallel lanes
of known width. Similarly, Schoepflin and Dailey [21]
proposed a dynamic calibration method with a simpli-
fied camera model by extracting the vanishing point of
a roadway. However, the applications of such methods
are limited to environments featuring long straight lines
that can be extracted with high precision. The dynamic

correction method proposed in this paper has no as-
sumptions about the imaged environment.

3 SOURCES OF ERROR

In this section, we characterize and measure the sources
of error in real PTZ cameras. These sources include
mechanical offsets in the cameras’ stepper motors, ran-
dom errors in the reported (pan, tilt, zoom) coordinates,
accumulated errors in these coordinates that increase
with extended continuous operation, and unpredictable
jumps in error that occur when the power to the camera
is cycled. These types of error combine to make open-
loop calibration of PTZ cameras inherently inaccurate,
especially at high zoom levels.

3.1 Mechanical Error

PTZ camera controls are usually based on stepper mo-
tors, the accuracy of which range from 0.009 to 1 degrees.
From our observations, the mechanical error depends on
the camera’s manufacturing quality and can be compen-
sated for. In order to quantify the error, we conducted a
simplified experiment. A PTZ camera is first calibrated
with a checkerboard target [27] at a fixed (pan, tilt, zoom)
setting. We let K be the internal parameter matrix of
the PTZ camera, after accounting for lens distortion.
The camera is then directed to purely pan (or tilt) with
a constant step length of Ap (or At), each position
corresponding to a rotation matrix R. A pair of images is
acquired before and after each rotation, which are related
by a homography matrix that can be estimated based on
matched features, denoted H. On the other hand, the
ideal homography matrix induced by the rotation can
be computed as H = KRK~!. Thus, we can represent
the error between the actual and desired rotations by the
rotation matrix

R, = K 'THH 'K 1)

The rotation errors in both the pan and tilt axes, e, and
e:, are then extracted from this matrix. Figure 2 shows
two examples illustrating the mechanical error in PTZ
rotation. The error increases with rotation angle, which
is quantified in Figure 3 for two PTZ camera models,
the Axis AX213PTZ and Axis AX233D. The relationship
between the rotation error and rotation angle is close
to linear. Since the PTZ controls are based on stepper
motors, no hysteretic phenomenon is observed.

3.2 Random Error

In addition to mechanical errors, we also observed non-
negligible random errors, as illustrated in Figure 4. We
compared two groups of images acquired at the same
position before and after 30 minutes of random motion,
and observed 5-7 pixels of error at the edges in the
images.

We next conducted another experiment to observe the
error over a longer time span of 200 hours, summarized
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Fig. 2. Sample images illustrating mechanical errors when panning and
tilting the camera. Yellow trapezoids indicate the ideal field of view of the
camera while red trapezoids indicate the actual field of view. (a) Step
panning at 5 degrees per step. (b) Step tilting at 3 degrees per step.
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Fig. 3. Errors as a function of (a) pan and (b) tilt angle for two models
of PTZ cameras.

in Figure 5. We placed checkerboard targets at four moni-
tored positions in the scene, corresponding to fixed (pan,
tilt, zoom) coordinates. A PTZ camera was programmed
to move to a random (pan, tilt, zoom) setting every 30
seconds. After every hour, the camera randomly chooses
one of the four monitored positions and acquires an
image, from which the corners of the target are automati-
cally extracted and compared to the reference image. The
error at time ¢ is defined as e(t) = & SN | [|x¢(t) — x7|,
in which N is the number of corners on the target, and
x¢(t) and x! are the image coordinates of the i'" corner
in the image after random motion and in the reference
image respectively. From the results, we can see that
the error increases with zoom level, to a maximum of
38 pixels of error recorded at position A (the maximum
zoom).

From Figure 5, we can see that besides the random
error, there is a raising trend in the errors over time,
i.e., an accumulation of error. Furthermore, we were
surprised to find that serious error is introduced every
time we restarted the PTZ camera — that is, the “home”
position changes significantly between power cycles. The
third row of Figure 5 shows the images acquired at the
monitored positions after restarting the PTZ camera; in
positions A and B, the targets have nearly disappeared
from the field of view.

These factors — mechanical, random, accumulated,
and power-cycling errors — all argue that a PTZ camera
cannot simply be calibrated once and forgotten. Instead,
the calibration should be constantly maintained over
time if absolute (pan, tilt, zoom) coordinates are to have

(d)

Fig. 4. Experiment illustrating random errors in PTZ cameras. (a) The
original image. (b) The image after 30 minutes of random panning, tilting,
and zooming. (c) The differences between the images in (a) and (b). (d)
Zoomed-in details of vertical and horizontal edges in (c).

any meaning (e.g., used for active control of a camera
based on a computer vision algorithm). The rest of this
paper addresses a complete model for PTZ cameras,
and methods for both initial calibration and calibration
maintenance.

4 A COMPLETE MODEL FOR A PTZ CAMERA

In this section, we propose a complete model for a PTZ
camera. The common pinhole camera model with lens
distortion is not sufficient to represent a PTZ camera,
since we require a very important zoom scale parameter
that greatly affects the other parameters. Our proposed
model is simple, continuous as a function of zoom scale,
and can be accurately calibrated with a small number of
images.

4.1

We assume the standard model for the internal parame-
ters of a camera without lens distortion at a fixed zoom
scale, namely a 3x3 calibration matrix K(z) given by

Camera Model

fz(2) 0 Co
K(z) = 0 fu(2) ¢y )
0 0 1

where f,(z), fy(z) are the focal length in units of x and
y pixel dimension and ¢ = (¢, ¢,) is the principal point.
We assume the principal point is fixed and the pixel
skew at all zoom scales is 0 in this paper. The relationship
between a 3D point X and its image projection x is
given by x ~ K(z) [R | t] X, in which R and t are the
rotation matrix and translation vector that specify the
external parameters of the camera, and x and X are the
homogeneous coordinates of the image projection and
3D point, respectively.

Since wide-angle lenses are commonly used in PTZ
cameras, we must also consider lens distortion. While
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Fig. 5. Repeatability experiment using four different monitored (pan,tilt,zoom) coordinates over the course of 200 hours. The first row shows the
original images. The second row shows the error in pixels as a function of time over the 200-hour experiment. The third row shows the monitored

positions after power-cycling the camera, indicating serious errors.

polynomial models are often used to describe modest
radial distortion, we use the division model proposed by
Fitzgibbon [7], which is able to express high distortion
at lower order. Hence, we model the radial distortion
using a single-parameter division model, that is,
~ Xq
Xy =—=—"""—
b T+ R(2)[%all?
in which x, is the undistorted image coordinate, x4 is
the corresponding distorted image coordinate, X, 4y =
X{u,qy — € are the normalized image coordinates, and

k(z) is the distortion coefficient, which varies with zoom
scale.

®)

4.2 The Effects of Zooming

We investigated the change in intrinsic parameters with
respect to different zoom scales, by calibrating a PTZ
camera with resolution 704x480 at 10 zoom scales rang-
ing from 0 to 500 using Zhang's calibration method [27].
We note that the zoom scale is measured in arbitrary
units specified by the camera manufacturer. At each
zoom scale, the camera was calibrated 20 times. The
average relationships between the focal length f, and
lens distortion coefficient x with respect to zoom scale
are illustrated in Figure 6.

We observed that the principal point (c,,¢,) is stable
with respect to zoom scale and also consistent with
the zooming center, so we drop its dependence on =z
in Equation (2). From Figure 6 we can see that it is
reasonable to create continuous models for the intrinsic
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Fig. 6. Intrinsic parameters as a function of zoom scale. (a) Focal length
f= vs. zoom scale. (b) Lens distortion coefficient « as a function of zoom
scale.

parameters of a PTZ camera as a function of zoom scale.
Let f5(0), f,(0), x(0) and (cz, ¢,) be the calibrated intrin-
sic parameters at the initial zoom scale, which is z = 0.
In practice, the relationship between the focal length
and zoom scale is nearly linear. However, it is safer to
consider the relationship to be up to second order, since
the zooming control quality varies for different cameras.
Thus, we propose the model for focal length as:

fo(2) = f2(0) +ayz +bp2? (4)

We note that f,(z) = afy(z), where a is the fixed
pixel aspect ratio. We observed that the lens distortion
coefficient x can be modeled as a function of zoom scale
z by

Ay

k(z) = k(0) + m

)
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In practice, the quadratic term in z in the denominator
dominates the higher-order terms.

5 FuLLY CALIBRATING A PTZ CAMERA

We now present a novel method for the complete self-
calibration of a PTZ camera using the model proposed
in the previous section. The method proceeds in several
steps, described in each subsection, using a minimal
amount of information to initially estimate each param-
eter of the model. In particular, each step generally uses
either:

o a “zoom set” Z of M > 3 images taken at the same
pan-tilt position and several different zoom scales
{#1,...,20m}. One of these zoom scales should be
the lowest (i.e., widest angle) zoom scale z;. A pan-
tilt position with a large number of features should
be used.

o a “pan-tilt set” P7 of N > 3 images taken at
several different pan-tilt positions and the lowest
(i.e., widest angle) zoom scale zy. The images should
be in general position; that is, they should avoid
critical motions such as pure panning.

Each initial estimate is obtained using a simple linear-
least-squares problem using feature point correspon-
dences either between images in Z or images in P7. In
practice, we use the SURF feature and descriptor [2] to
produce a large number of high-quality correspondences
that form the basis for the estimation problems (see also
Section 6.1).

These initial estimates are then jointly refined
using nonlinear optimization (i.e., Levenberg-
Marquardt) to produce the final calibration parameters,
consisting of: the principal point, the parameters
{as,bs, f2(0), f4(0),ax,be, k(0)} that specify the focal
length and lens distortion as a function of zoom scale,
and the linear coefficients {3,,0;} that account for
the mechanical error in pan and tilt measurements
illustrated in Figure 3. The overall algorithm is
illustrated in the top half of Figure 7. In Section 6, we
will describe our approach to keeping a PTZ camera
calibrated after many hours of operation, illustrated in
the bottom half of Figure 7.

5.1 Principal Point

In this section, we use the zoom set Z to estimate the
principal point ¢ = (cg,¢,). In our experiments, we
observed that the center of zoom is well-modeled as the
intersection of the optical axis with the image plane (i.e.,
the principal point) [13], [14], and that the principal point
(cz,cy) is constant as a function of zoom scale.

We begin by considering two projections (z,y) and
(@',y") of the same 3D scene point in different images of
Z, corresponding to zoom scales z and 2z’ respectively.
The following relationship holds, even in the presence
of lens distortion:

' —c ' —¢ 2
= Y% _Z2 ©)

Y—Cy z

T — Cy

Hence
cx(y—y') +eya’ —z)=2"y -y )

Thus, every correspondence across zoom scales gives
one equation in the two unknowns (c;,c,). A large
number of cross-scale feature correspondences results in
a linear least-squares problem of the form

Cx|
A Ly} =P ®)

We use the resulting estimate (ATA)"'ATb as the
principal point. From this point forward, all the coordi-
nates are normalized with respect to the principal point,
ie, X« xXx—c.

5.2 Lens Distortion

Tordoff and Murray [25] showed that radial lens dis-
tortion has a great impact on the accuracy of camera
self-calibration. Therefore, in this section, we use two
images from the set P7 that have the same tilt angle but
different pan angles to estimate the important parameter
%(0), the lens distortion coefficient at the lowest scale.

When long, straight lines are present in the scene,
radial distortion can be estimated (e.g., [19]); however,
we do not wish to impose any restrictions on scene
content. Here, we propose a novel approach inspired
by Fitzgibbon [7], who introduced a method for lin-
early estimating division-model lens distortion during
the estimation of the fundamental matrix for a moving
camera. This approach to simultaneously estimating lens
distortion and the fundamental matrix proved to be
flexible and reliable in practice [12], [24]. Here, we extend
this idea, simultaneously estimating the lens distortion
coefficient and the parameters of a homography induced
by pure panning.

Consider a feature correspondence x, < x|, between
two ideal, undistorted images taken by a PTZ camera
undergoing pure panning at the lowest zoom scale. Since
we assume the camera center to be constant, the feature
match is related by a homography, represented as a 3x3
matrix H that acts on homogeneous image coordinates,
x,, ~ Hx,. This can also be expressed as

x; x Hx, =0 )

We note that for pure panning, H only has 5 nonzero

elements, since hia = hoit = hos = hzs = 0. Now

we consider a correspondence between distorted images

X4 < X);; combining (9) with the division model (3) gives

(x4 + k(0)z) x H (xq + #(0)zq) =0 (10)

where zq = [0, 0, |xa|*]" and z} is defined similarly.
Expanding (10),

x4 x Hxq + £(0) (z5 x Hxq + x; x Hzq) an

+ k(0)* (23 x Hzq) =0

or

(M1 + £(0)M> + £(0)°Mjz) h = 0 (12)
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Fig. 7. Outline of the proposed algorithm.

where h € R collects the non-zero parameters of H into
a unit-length column vector, and My, Ms, M3 € R?*® are
given by:

0 0 —y x!
M =0 y oy y]

[0 0 —sy 0 wys
My s’ s'+s 0 0 —as
0 0 0 0 0
M?’__o ss' 0 0 0]

where s = ||xq|| and s’ = ||x}||. Thus, every correspon-
dence results in 2 equations in the 5 unknowns of H and
the unknown lens distortion parameter x(0). A large set
of correspondences between the image pair results in
a polynomial eigenvalue problem in the form of (12).
This problem can be solved using Matlab’s polyeig
function applied to 5 of the 6 equations resulting from
3 correspondences. After removing infinite or imaginary
eigenvalues, we initially estimate x(0) as the eigenvalue
corresponding to the minimizer of ||x}, x Hixyl|, where

H; is formed by reshaping the entries of the correspond-
ing eigenvector. Nonlinear minimization of the objective
function

N

F(x(0),h) =)

n=1

x4" xq" H
X Hi
1+ #(0)[[xg"| 1+ £(0)[[xa"|
(13)
produces a refined estimate of «(0) for the next step.

5.3 Focal Length

Next, we use the set P7 to estimate the focal length
at the lowest zoom scale, f(0). In the previous step,
we estimated the lens distortion parameter x(0), so we
assume that we can generate feature correspondences
between undistorted versions of the images in P7. Each
such pair is related by a homography, which we can
explicitly compute in terms of the internal and external
parameters:

H~ K(0)RK(0)™* (14)

where K(0) is the calibration matrix for the undistorted
image at the lowest zoom scale, and R is the relative
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3D rotation of the camera from the home position. Note
that all the image coordinates used to compute H are
normalized with respect to the principal point. If we
denote the image of the absolute conic [8] at the lowest

scale as )

w(0) = (K(0)K(0) ") (15)
then combining (14) and (15) yields
w(0)=H Tw0)H! (16)

Since in this case, K(0) and w(0) are diagonal matrices,
we can write (16) in the form Aw = 0 where A isa 3x3
matrix and w contains the diagonal elements of w(0) re-
arranged as a 3 x 1 vector. If we obtain homographies
corresponding to several pairs of images in P7, then
the system Aw = 0 is overdetermined. The vector w
(and hence w(0)) can be obtained using the Direct Linear
Transform [8]. Then we can estimate

f2(0) = V]ws/wi|  f,(0) = \/|wz /w2

in which w; is the i*" element of w.

17)

5.4 Zoom Scale Dependence

At this point, we have reasonable estimates for the lens
distortion parameter x(0) and the camera calibration
matrix K(0) at the lowest zoom scale. The final ini-
tial estimation problem is to compute the parameters
{ay,bs,a,b.} from (4) and (5) that define the variation
of the intrinsic parameters over the entire zoom scale.
For this problem, we use images and feature correspon-
dences from the set Z.

First, we estimate the lens distortion parameters at
each scale, {k(z1),...k(2zn)}. We consider each image in
Z independently; since the zoom scale zj is in this set,
the images with zoom scales zy and z; are related by a
homography H;. Since we already have estimated ~(0),
we have a relationship between correspondences in the
undistorted image corresponding to zo and the distorted
image corresponding to z; that resembles (10):

x3 x Hx§ + k(2)z8 x Hx§ =0 (18)
where x§ (undistorted) « xd(distorted). This
corresponds to a polynomial eigenvalue problem

(M1 + £(2;)M2)h =0 (19)
where
e P IR O

(20)
with similar notation to (13). Since the camera undergoes
pure zooming, and all the image coordinates are normal-
ized with respect to the principal point, the unknown
homography again has only 3 nonzero elements, with
hlg = h13 = h21 = h23 = h31 = h32 = 0. We can again
solve the eigenvalue problem to obtain an estimate of
the homography H; and the lens distortion coefficient
K(zi)-

It is straightforward to show that the camera
calibration matrix K; for each undistorted image in Z
is related to the camera calibration matrix K(0) at zoom
scale zy by

K; = H;K(0) 1)

After estimating the lens distortion and underlying
homography in the previous step, the right-hand side
of (21) is entirely determined, and we immediately
obtain an estimate of the camera calibration matrix
K; = diag(k1, k2, k3), from which we can extract the focal
length f,(z) = ’;—; and f,(z;) = E—; The aspect ratio «
can be estimated as

|Z]
1 fy(2)
o==

EPNAe

Since « is fixed, from this point forward, we only discuss

one focal length parameter f(z) = f;(z), assuming « can
be used to compute f,(z).

Finally, we use all the estimated f(z;) to estimate the

parameters {af, by} of the focal length model by solving
the linear least-squares problem:

f(z1) = f(0)
afl .
[bf} - :
We similarly use all the estimated x(z;) to estimate

the parameters {a,,b.} of the lens distortion model by
solving the linear least-squares problem

1 —(r(z1) = £ (0))? [ ] Fz1) (5 (21) — £ (0))2

(22)

Lol V)

z1 z

(23)

Sto e

Zn Z

f(zn) (6 (z) — £(0))?

(24)

We note that a relatively small number of images in

Z (typically 5-10) are required to calibrate the complete

PTZ model, compared to the number of samples that

may be required for the linear interpolation model pro-
posed in [22].

1 —(k(z0) — £ (0))?

5.5 Refinement with Nonlinear Optimization

The parameters obtained up to this point were all ob-
tained independently using simple linear least-squares
problems. These serve as good initializations for a final
nonlinear joint parameter estimation over all the images
in Z. That is, we exploit our knowledge of the explicit
form of the homography matrix Hj; for a pair of undis-
torted images with the same (pan, tilt) and varying zoom
scales z; and z;:

Hy=10 75 al- ) (@)
0 0 1

. . f(zi) _ afzﬁ-bfzf
in which 725 =1+ =55~
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Using this explicit parametrization, we minimize the
reprojection error summed over every pair of images in
Z and every correspondence in the image pair:

Flag,bs, f(0), an, b, 5(0) = > > |[Hyak—af;|
(4,5)€EZ {zfj,wfj’}

(26)
Here, {z};, xfj/} are undistorted using (3) and (5) with re-
spect to the updated {ay, b, (0)}. This sum-of-squares
cost function can be minimized using the Levenberg-

Marquardt algorithm.

5.6 Calibrating Mechanical Error

In the previous section, no information from the PTZ
camera control interface is used in the calibration, since
the reported pan and tilt parameters are considered to
be inaccurate. Based on the observations in Section 3, we
propose a linear compensation model for the mechanical
error in the PTZ camera as:

Pm = ﬂpp b = Bit (27)

where (py,, t,,) are the measured (reported) pan and tilt,
and (p, t) are the actual pan and tilt. Via (1), we compute
the errors (e, e;) at each position in the set P7, leading
to the estimates

N ei N ei
Bp=1+) ,/%=1+§:E£ (28)

From this point forward, all the (pan, tilt) parameters
are compensated using (27).

6 DYNAMIC CORRECTION FOR A PTZ

CAMERA

We assume that the algorithms in Section 5 are carried
out at the time the PTZ camera is mounted on-site.
However, it’s unreasonable to expect PTZ cameras to be
frequently recalibrated, especially in a highly trafficked
environment with many cameras. As demonstrated in
Section 3, the pan and tilt parameters reported by the
camera become increasingly unreliable; therefore, we
desire a dynamic correction method that ensures the
same field of view is captured every time the user
inputs an absolute (pan, tilt, zoom) coordinate, even
after hundreds of hours of operation. Our approach is
to build a feature library of the camera’s environment
at the time of mounting, and use matches between the
on-line images and this library as the basis for online
correction. That is, the user inputs a (pan, tilt, zoom)
directive to the camera, and the camera compensates
“behind the scenes” to make sure the correct field of
view is returned.

6.1

Figure 8 illustrates the concept of the feature library
for a PTZ camera, which we build in undistorted (pan,

Feature Library of the Scene

tilt) coordinates. We set the zoom scale to its minimum
value, and control the camera to sweep around the
environment at discrete pan and tilt positions sufficient
to cover the entire scene. At each position, we acquire
an image and extract all the SURF features except at the
image borders. We prefer SURF features due to their use
of efficient box-filter approximations instead of Gaussian
partial derivatives as in SIFT [16], enabling very fast
detection and matching [17].

Optical Center

(b)

Fig. 8. The feature library for a PTZ camera. (a) The features for the PTZ
camera are stored in spherical coordinates. (b) Two projections of the
same 3D point from images with different (pan, tilt, zoom) coordinates
will have the same (0, ¢) values in the feature library.

The library stores each feature 4, its SURF descriptor,
and its location in undistorted (pan, tilt) coordinates
(0;, ¢:), computed as

L Yi

(0i,0;) = (p + arctan F0) t + arctan af(()))
where (z;,y;) is the image coordinate of the feature on
the undistorted image plane, and (p,t) are the (pan,
tilt) coordinates of the camera for this image. We note
that all the intrinsic parameters of the camera, including
the lens distortion coefficient, are available and reliable
at this stage, since it is performed immediately after
the calibration process from Section 5. Features from
different images that highly overlap in both descriptor
and position are merged, so that each feature appears
only once in the library.

Figure 8b illustrates how two projections of the same
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3D point from images with different (pan, tilt, zoom) co-
ordinates have the same (6, ¢) values using this scheme,
suggesting its value for providing accurate pose estima-
tion reference. We note that Sinha and Pollefeys [22]
mentioned a related possibility of using a calibrated
panorama for closed-loop control of a PTZ camera;
however, the pose is retrieved by aligning the current
image to an image generated by the panorama with the
same pose configuration, which would introduce serious
errors at the edges due to distortion. Furthermore, the
method depends on the assumption that the internal
parameters of the camera and the zoom control are
stable. Finally, this method can only correct small errors
in pose, since with large errors, the two images will fail
to match.

Since the scene features may change over long periods
of time, we constantly update the feature library with
features that are repeatedly detected but unmatched as
the camera operates.

6.2 Online Correction

In this section, we assume that the camera is in an
unknown (pan, tilt, zoom) true pose (p, ¢, z) that must be
estimated. It reports its pose as (pm, tm, zm), Which we
assume are incorrect due to the accumulation of errors
discussed in Section 3.

The correction process involves the feature library £
created at the time of mounting, and the set of SURF
features S acquired in the current image. We try to match
each feature in S to £, resulting in a set of putative
matches {(x;,y;) < (0;,6:),i = 1,...,N}, where (z;,y;)
is the normalized (with respect to principal point) feature
location in the (distorted) current image, and (6;, ¢;) is
the true (pan, tilt) location of a feature from L. The
feature matches are initially computed using nearest-
neighbor matching between SURF descriptors.

The problem of estimating the true pose (p,t,z) pro-
ceeds in several steps. We begin by noting that

s Yi _
a (tan(ei - p))  tan(g; —t) 0 (29)

Considering (29) for any two features ¢ and j, we can
compute an estimate for (p,t) by solving the indepen-
dent pair of quadratic equations:
(zjtan; — x;tan ;) tan® p
+ (z;
+tanf;z; —tanf;z; =0
(y; tan ¢; — y; tan ¢;) tan®t
+ (yi — yj)(tan ¢; tan ¢; — 1) tant
+tan ¢;y; —tan ¢;y; =0

—z;)(tanf; tand; — 1) tanp

(30)

We use the criteria sign(f; —p) = sign(x;) and sign(¢; —
t) = sign(y;) to choose the correct solution. Then we
can obtain an initial guess for (p,t) by removing the
outliers with two-parameter RANSAC, which computes
(p,t) for randomly selected feature pairs with (30) and

evaluates the fit with (29). This can effectively remove
the mismatched feature pairs. In order to make the
feature matching robust to large changes in the scene,
we use the following criteria to evaluate the result:

std(E) < e, |Sin] > 7 (31)

in which S;,, is the set of 7 inliers found after RANSAC
and std(E;,) is the standard deviation of the error in
fitting (29) with each inlying feature pair. In practice, we
used (e,7) = (1.5 pixels, 20). If these criteria cannot be
met, the camera should be directed to another random
position to capture another image for correction.

Expanding and rearranging (29) gives
ax;  tan(f; —p)

B B _ (tan6; — tanp)(1 + tan ¢; tant)
wi= yi  tan(¢; —t) (1 +tan6, tanp)(tan¢; — tant)
(32)
We note that this relationship holds even though (z;, y;)
are in distorted image coordinates, since by (3), the ratio
w; is invariant to the unknown value (z). Thus, for N
matches, we minimize the nonlinear cost function

Fi(p,t) = |ATv —b]| (33)
in which

wi tan By tan ¢1 + 1 wy tan Oy tan oy + 1

A = | w; —tan @ tan ¢ wy — tan Oy tan ¢
tan ¢1 — wy tan 6, tan oy — wy tan Oy
tan 61 — wq tan ¢ tan p
b = : , V= tant (34)
tanfy — wy tan ¢ tanptant

The minimization can be accomplished using the LM
algorithm with the initial guess from the output of
RANSAC. Once the pose (p,t) is determined, we can
ideally compute the lens distortion coefficient «(z) using
any two features ¢ and j in either of the two forms

tan(6; — p)z; — tan(0; — p)x;
w(2) :tan(ﬁj — p)x;r; — tan(f; — p)z,r; 35
_ tan(¢; — t)y; — tan(¢; — t)y; (35
tan(¢; — t)y;r; — tan(g; — t)y;r;

where r; = 27 +y?. An estimate of x(z) can be computed
as the average of all 2N (N — 1) pairwise estimates from
(35).

Similarly, we can ideally compute the focal length f(z)
from any feature i using

£(2) = (azx; tan(¢; — t) + y; tan(0; — p))

~ 2a(1 + k(2)r;) tan(6; — p) tan(¢; — t)
and an estimate for f(z) can be computed as the average
of all N such estimates.

(36)

In most situations, we can assume the internal model
is stable and we only need to correct the offsets of
pan, tilt and zoom, which can be done with a single-
shot process as follows. We first perform a joint nonlinear
minimization to refine the estimates of (p,t, f(z)) by
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minimizing
N

=2

=1

f(z)tan(0; —p) —

(20
af(z) tan (i —t) —

a(p,t, f(z Ui
(I+r(2)r:)

(37)
in which «(z) is computed by (5). Then we can retrieve
the true z by

2= (207 oy + (6 — b, [FO - ()] @)

The offsets for correcting a measured pose setting can be
stored as Ap = p — pm, At =t —t,, and Az = 2z — zp,.
We can now direct the camera to user-requested pose
settings (pr, tr, 2r) by sending the pose instruction (p, +
Ap,t, + At, z. + Az) to the camera.

In rare cases, for low-quality cameras and lenses, the
internal parameters of the camera should be occasionally
re-calibrated completely, using multi-shot correction. That
is, several images are acquired in order to re-estimate
the relationship between the focal length/lens distortion
and zoom scale. In our experiments, this happens in-
frequently, only after hundreds of hours of continuous
operation and repetitive power switching.

7 EXPERIMENTS

We conducted experiments on both simulated data and
real data to evaluate the proposed models and algo-
rithms.

7.1 Simulated Data

In this section, we discuss experimental results obtained
using simulated data. We first generated parameters for
a PTZ camera using the model in Section 4 using the
observations in Section 3. The resulting parameters are:
fz(2) = 5004+0.124+0.3x107°22, a = 0.95, k(2) = —0.15+
%, (czycy) = (320,240). Next, we generated 5
images for the set P7 and 5 images for the set Z, used
to estimate the parameters of the model. We generated
1000 points in 3D and projected these points into each
of the P7 and Z images to generate correspondences
between the (distorted) image planes. Since real-world
matching isn’t ideal, we also added zero-mean, variance
o? isotropic Gaussian random noise to each projected
image location, where o ranged from 0 to 3.

This noisy, simulated data was input to the series
of steps outlined in Section 5 to estimate the param-
eters of the model; the calibration errors for the in-
trinsic parameters are shown in Figure 9. The reported

error for each estimated parameter is computed as
param,g, —param,
param,

m‘”l’ except for the error in x, which is

actual

computed as |param,g, — param, |-

From the results it can be seen that the calibration
algorithm is effective and able to maintain reasonable
performance with the presence of noise. The algorithm
seems to perform slightly better at higher zoom scales.
We observed that even in the worst case of 3-pixel noise,
the estimated focal length errors are between 6% and 8%.

7.2 Real Data

We also tested the proposed model and calibration
method on an Axis AX213 PTZ camera with a resolution
of 704 x 480 and 35x optical zoom. Sample images used
in the calibration are illustrated in Figure 10. We used 5
images in each of the sets P7 and Z.

Fig. 10.

(a) Example images from the set P7, with a subset of SURF
matches. (b) Example images from the set Z, with a subset of SURF
matches.

In order to evaluate the performance of the proposed
method, we calibrated the camera at each fixed (pan, tilt,
zoom) setting with Zhang’s method [27], which we con-
sider as ground truth. We also compare our calibration
method to that of Sinha and Pollefeys [22], using 100
images from different zoom scales and poses. We call
this alternate method “discrete zoom calibration” (DZC).
Note that we use the division model of lens distortion
for all the methods.

Figure 11 compares the results of the proposed method
to discrete zoom calibration, as a function of zoom
scale. The reported error for each estimated parameter

param,g; —param

“‘a“g‘ except for the error

in «, which is computed as |param,,; — param,,,,,.|. We
can see that the proposed method outperforms DZC
for all the parameters, especially at higher zoom scales.
Figure 11d shows the average error in f(z;) as the
number of images used in both algorithms increases. We
observe that DZC requires at least 80 images in order to
achieve reasonable results, which the proposed method
can achieve using only 10 images, and that the proposed
method is relatively insensitive to the number of images
used.

Since a minimum of 5 images is enough for the
calibration, all the nonlinear optimization routines con-
verge rapidly, and the calibration process is very effi-
cient. The whole process (including image acquisition)
can be done within 30 seconds by our C# program on
an Intel Core2 Duo 2.66GHz desktop with 3GB Memory.

is computed as ‘

param, o,

7.3 Dynamic Correction

After the initially calibrating the real PTZ camera as
described above, we mounted it in a lab setting. As
described in Section 6.1, we built the feature library at
the lowest zoom scale, as shown in Figure 12a. Figure
12b illustrates a sample image acquired after 100 hours
of continuous PTZ operation and several power cycles,
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Fig. 11. Calibration results for the real experiment. The error in each parameter is plotted as a function of the zoom scale 2. (a) The error in the
principal point (cz, ¢cy). (b) The error in the focal length f(z). (c) The error in the lens distortion coefficient x(z). The solid lines show the error for
the proposed method using 10 input images, and the dotted lines show the error for DZC using 100 images. (d) The average error in f(z) as the

number of images used changes.

and the corresponding SUREF features. Note that changes
have occurred in the scene. Figure 12c illustrates the
subset of online features matched to the library. Here,
the library features are rendered at image coordinates
corresponding to the reported (pan, tilt) of the camera,
which we can see is quite erroneous. That is, after 100
hours of operation, the (pan, tilt) reported by the camera
is quite unreliable.

In order to quantify the performance of dynamic cor-
rection, we conducted an experiment immediately after
building the feature library. The camera is directed to
several different positions in the pan range [—45,45] and
tilt range [—10, 50]. For each position, the pose parame-
ters computed using the feature library are compared
to the parameters read from the camera, which are
considered to be ground truth. Figure 12d shows the
sum of squared error in pan and tilt for each position.
We observed that the error is less than 0.10 degree for
all positions with a mean of 0.03 degrees.

Next, we repeated the experiment from Figure 1,
now incorporating dynamic correction; the results are
illustrated in Figure 13. We can see that the targets of
interest are now successfully located, suggesting that the
proposed method can significantly improve the perfor-
mance of PTZ cameras in video surveillance.

Error (degree)

Tit (degree)

0y

(d)

Pan (degree)

Fig. 12.
zoom scale. (b) A sample image acquired after 100 hours of continuous
PTZ operation and several power cycles, and the corresponding SURF
features. (c) The subset of features in (b) matched to the library (after
outlier rejection). The lines indicate the distance to the feature library
rendered at the (pan, tilt) reported by the camera, which we can see is
quite erroneous. (d) The correction error for different poses.

(a) Example features from the feature library at the lowest
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Fig. 13. The 36-hour experiment from Figure 1, repeated with our pro-
posed dynamic correction algorithm. (a,c) The red rectangles indicate
the image after dynamic correction. (b,d) Close-ups of the images after
dynamic correction. Compare these images to Figure 1(b)-(c).

We also repeated the longer 200-hour experiment from
Figure 5, now incorporating dynamic correction; the
results are illustrated in Figure 14. We can see that the
error is significantly reduced for all monitored positions.
In addition, there is no increasing trend in the error over
long periods of random motion. Even after restarting the
camera, all four monitored positions are well-recovered
using dynamic correction (bottom row of Figure 14).

The dynamic correction algorithm is efficient in prac-
tice. With the same hardware configuration as for the
initial calibration, a single-shot correction process (in-
cluding image acquisition) can be done within 3 seconds.
With a GPU implementation (NVIDIA GeForce GTX680
with 4G memory), the time for single-shot correction can
be reduced to 60 ms, which makes dynamic correction
feasible for every movement of the PTZ camera.

We also conducted a similar experiment in an outdoor
environment. We chose five (pan, tilt, zoom) locations to
monitor in the outdoor environment, shown in Figure 15.
The PTZ camera randomly rotated for 120 hours. Every
half an hour, the camera captured images from all five
monitored locations using both no correction and the
proposed dynamic correction algorithm. We computed
the average distance between matched SURF features in
the reference and online images as a function of time,
shown in the bottom row of Figure 15. We arrive at the
same conclusion as in the indoor experiment: the dy-
namic correction effectively removes accumulated error
and reduces the average error in (pan, tilt) estimation.
We can see that the errors using dynamic correction are
somewhat higher than in the indoor experiment. This is
due to the much larger field of view and increased dis-
turbances (e.g., changes in luminance and background),
as well as the high zoom scales.

However, we note that the (pan, tilt, zoom) parame-
ters computed after dynamic correction are sufficiently
accurate in an absolute sense that we can use them to

build panoramas without further registration. That is,
we create a planar panorama by pointing the camera
to a (pan, tilt) position (which is dynamically corrected
by our algorithm) and simply rendering the pixels of
the obtained image onto the panorama canvas at the
ideal locations. Two example panoramas are illustrated
in Figure 16. We can see that edges in the images line up
precisely. This suggests that the proposed dynamic cor-
rection algorithm is immediately useful for algorithms
like change detection, in which online and reference
images must be accurately aligned.

Fig. 16. Two panoramas obtained by the PTZ camera with dynamic
correction. (a) Lab from images at 50 positions. (b) VCC from images at
20 positions.

8 CONCLUSION

We proposed a complete PTZ camera model, and pre-
sented an automatic calibration method based on this
model. Using only matched image features extracted
from a few images of the scene at different poses and
zoom scales, the complete model for the PTZ camera can
be recovered. Furthermore, we presented a fast dynamic
correction method for keeping a PTZ camera calibrated,
using a feature library built at the time the PTZ camera
is mounted. Experiments using both simulated and real
data show that the calibration methods are fast, accurate,
and effective. The proposed PTZ camera model enables
dynamic correction using only one image, which is not
possible using previous methods.

The accurate estimation of the principal point is crucial
to our calibration method, especially the assumption
that it coincides with the distortion center and zooming
center. However, this may not be the case for some cam-
eras [14]. Also, while we assumed that the PTZ camera
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online images as a function of time; red bars are errors using dynamic correction while blue bars are errors without correction.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, NOVEMBER 2012 14

was purely rotating, in practice the effects of possible
translation of the camera center cannot be ignored, as
observed by several researchers [9], [10]. Finally, we
observed that the auto-focusing of the camera has a non-
negligible influence on its internal parameters. We plan
to investigate all these issues, in order to make the PTZ
camera model more accurate and comprehensive.

We observed that the algorithm may fail when a
large component in the scene was moved or when the
background is moving slowly. Since the scene features
may change frequently for some applications, we plan to
investigate approaches for keeping the feature library up
to date in dynamic scenes. Finally, we plan to incorporate
the proposed model and algorithms into real video
surveillance applications, to improve both 2D and 3D
tracking and localization performance.
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