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Abstract

We introduce an airport security checkpoint surveillance
system using a camera network. The system tracks the
movement of each passenger and carry-on bag, continu-
ously maintains the association between bags and passen-
gers, and verifies that passengers leave the checkpoint with
the correct bags. We present methods for calibrating the
camera network and tracking the many moving objects in
the environment. We define a state machine for bag track-
ing and association, dividing the imaged area into several
semantically meaningful regions. The real-time algorithms
are validated on a full-scale simulation of a security check-
point with several runs of volunteer groups, demonstrating
high performance in a challenging environment.

1. Introduction

Airport security is a critical issue for defense and home-
land security applications. Every day, millions of passen-
gers pass through airport security screening checkpoints,
which include X-ray machines to scan carry-on bags, and
metal detectors or other devices to scan passengers. How-
ever, to our knowledge there are no automatic methods in
place for tracking passengers and bags as they pass through
such checkpoints, or for automatically maintaining the as-
sociation of each item on the conveyor belt to the correct
passenger. In this paper, we present a robust, real-time com-
puter vision system to solve these problems, using data from
a wide-area camera network containing both fixed and pan-
tilt-zoom (PTZ) cameras.

We built a full-scale simulation of an airport security
screening checkpoint, including a working conveyor belt
and an artificial X-ray machine and metal detector. Sev-
eral large groups of volunteers with real baggage were run
through the simulation, and instructed to behave exactly as
they would at an airport. The resulting multicamera video
contains examples of both normal and abnormal activities
characteristic of the real-world environment. The computer
vision problems are complex due to the crowded environ-
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ment, poor lighting/image contrast, and complex activities.
For example, bags and bins are routinely reordered to simu-
late forgotten laptops/liquids, and all bags and passengers
are at least momentarily hidden from view as they pass
through the X-ray machine/metal detector. We demonstrate
the results of our calibration, tracking, and association algo-
rithms on this real multicamera video, showing that despite

the challenging data we can achieve high performance’.

2. Related work

Computer vision is widely used in environment monitor-
ing. Many such systems are based on traffic monitoring and
pedestrian tracking [2, 6, 8, 10]. Much research is focused
on background/foreground modeling and understanding the
basic behavior of people under surveillance. However, less
research discusses the problem of tracking and associating
large numbers of people and belongings.

Bhargava et al. [1] proposed a method to detect aban-
doned objects in a crowded scene. When an unaccompa-
nied bag is detected, the system determines the most likely
owner by searching the video history for the person who
brought the bag into the scene. Cross-correlation is used
to match the bag templates. Though the algorithm works
well, it is somewhat time-consuming and limited to the ex-
ample of isolated abandoned bags. Lv et al. [7] presented
another algorithm for the same problem. They use features
extracted from tracking results, including speed, direction
and distance between objects, as evidence to decide on the
owner of an abandoned bag based on a Bayesian inference
framework. While the error rate in detection is low, it is dif-
ficult to assess the efficiency and flexibility of the algorithm
since the experiment was based on simple events. Krahn-
stoever et al. [5] proposed a multi-camera system to solve
the abandoned bag association problem. Object detection
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is done in each individual camera, and the information is
combined using calibrated extrinsic parameters. The bag
is associated with the owner whose track has the shortest
ground plane distance to it. We note that all these systems
are oriented towards associating isolated, stationary bags to
owners, as opposed to maintaining associations in crowded
scenes where all the objects are in motion.

3. Simulation Environment

Our simulation was constructed in a 50x40x30 ft?
black-box studio. Figure 1 shows an overhead view of the
studio and simulation.
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Figure 1. Overhead view of the checkpoint simulation environ-
ment.

We built a full-scale simulated metal detector and X-ray
machine, and constructed an operational conveyer belt and
roller assembly to accurately mimic the configuration of a
real carry-on baggage screening checkpoint. The conveyor
belt includes a control panel by which the staff can stop or
start the belt during baggage inspection.

The environment was instrumented with a camera net-
work consisting of 19 cameras. 13 fixed cameras and a
dome PTZ camera were mounted at the interstices of the
room’s catwalk ceiling pointing downward to cover the en-
tire floor. 5 PTZ cameras are mounted on the walls, pan-
ning regularly across the passenger lines and conveyor belt.
Each camera delivers images at about 10Hz, which is suf-
ficient for real-time tracking. The cameras are connected
and fed by power-over-ethernet cables leading back to a
power-over-ethernet switch. An application server man-
ages the network, controls the cameras, and records the
time-stamped video. The 6 PTZ cameras have resolu-
tion 704x480 and the 13 fixed cameras have resolution
640x480.

Several groups of volunteers participated in the simu-
lation as passengers. They were asked to go through the
checkpoint with real baggage as they would at a real air-
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port checkpoint (e.g., remove shoes and coats, remove lap-
tops and liquids from bags and place them in regulation-
sized bins, show agents valid ID and boarding pass at var-
ious points). Each round of simulation was monitored and
recorded by the camera network. In addition, some pas-
sengers were randomly given instructions to act out certain
roles, such as forgetting to remove liquids from their bags
or mistakenly picking up another’s bag. More than 10 hours
and 300GB of compressed multi-camera video data were
collected during the month the simulation was active.

4. System Calibration

In order to relate the cameras’ images to each other, all
cameras in the network must be jointly calibrated. The in-
trinsic parameters of each camera were calibrated prior to
mounting using several positions of a planar 30x34 cm
checkerboard target [11]. The intrinsic parameters of the
PTZ cameras were calibrated at several different zoom lev-
els, since the parameters vary during zooming. The RMS
re-projection error from the calibration procedure was un-
der 0.2 pixels for the fixed cameras and 0.25 pixels for the
PTZ cameras.

Thus, after mounting, the extrinsic parameters of the
cameras can be extracted from their essential matrices,
which can be obtained with the eight-point algorithm [3].
However, since our environment is large and the fields of
view of the ceiling cameras are limited, there is little over-
lap between the downward-pointing cameras. Instead, we
used a novel approach for calibration, first calibrating the
rotating PTZ cameras, and then using them as reference to
calibrate the fixed cameras.

We calibrated the PTZ cameras simultaneously, using a
scale bar of known length (1.18m) with two active lighting
balls on its ends. First, we adjusted the pan and tilt param-
eters of the 6 PTZ cameras so that their fields of view over-
lapped. Then, we randomly placed the scale bar at 15-20
different non-coplanar positions, imaging the bar with both
the room lights on and off. We extracted the centers of the
actively lit balls in each on/off pair and used them as cor-
respondences to estimate the essential matrix between each
camera to be calibrated and the reference camera. Finally,
we decomposed the essential matrices to obtain the extrin-
sic parameters (i.e., rotation matrix and translation vector)
for each camera. Finally, we perform a bundle adjustment
over the intrinsic and extrinsic parameters.

Next, we calibrated the fixed cameras using the PTZ
cameras as reference. Each fixed camera was calibrated
with respect to the closest PTZ camera, changing the pan
and tilt of this camera to obtain the best image overlap. As
before, the scale bar was imaged in different positions to
obtain feature points, and the essential matrix decomposed
to obtain the extrinsic parameters. Finally, since each fixed
camera was calibrated with respect to a different reference,



the results are unified to a common coordinate system by a
series of appropriate rotations and translations.

Finally, we perform a bundle adjustment over all the
cameras and observed feature points in the system, mini-
mizing the sum of variances of the reconstructed 3D po-
sitions of each point used in the calibration using the
Levenberg-Marquardt Algorithm.

To evaluate the calibration precision, the length of the
scale bar was reconstructed based on the estimated extrinsic
parameters. The errors in the length measurement ranged
from 1-4 mm (i.e., 0.1-0.3%), indicating a high-quality re-
sult. Figure 2 shows the results of the extrinsic calibration.

Extrinsic parameters (world-centered)
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Figure 2. Extrinsic calibration results, indicating the cameras’ po-
sitions with respect to the floor.

After calibration, we know the relative positions of all
the cameras. Therefore, we can stitch the images of the
floor taken by all the cameras together into one mosaic im-
age, which is well-suited for display and tracking. We cre-
ate the floor mosaic with a suitable combination of projec-
tive transformations, blending the image intensities at each
pixel based on its distance to the boundary of each image
plane containing it. We applied histogram equalization to
normalize the white balance for all the cameras prior to
blending. Figure 3(a) illustrates one frame of the mosaic
image created from all the overhead cameras. Figure 3(b)
superimposes the main areas of interest for our application
onto the mosaic image, which will be discussed further in
Section 6.

5. Tracking

We now describe our methods for robust, accurate real-
time object tracking, with customizations for both passen-
ger and bag tracking. The main component of both trackers
is the mixture-of-Gaussians method [9]. That is, we use an
adaptive background subtraction method that models each
pixel intensity as a mixture of K Gaussians, and update the
model parameters at each frame.

The probability of a pixel having color X; at time ¢ is
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(a) Stitched Image

(b) Areas of interest

Figure 3. (a) Example frame of the mosaic image. (b) Labeled
areas used for tracking and association. A is the Bag Drop area, B
is the Conveyer Belt area, C is the Pick Up area, and D is the Staff
area.
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Here, w; ; is the weight of the it" Gaussian at time ¢. We as-
sume the RGB channels are independently distributed and
share the same variance in order to simplify the computa-
tion. Thus, each covariance matrix is diagonal:
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At each pixel and time ¢, we determine the Gaussian mix-
ture component k giving the highest probability of observ-
ing this color, and update its weight and parameters as:
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Here, o is a learning rate that we set to 0.1 in our system.
p is a factor for adapting current distributions that we set to
0.05 in our system. We update the weights on the remaining
mixture components (i # k) as:

wip=(1—a)w; -1

&)

We then re-sort the components in order of decreasing
weight.



The foreground pixels corresponding to moving objects
are separated from the background by defining the back-
ground model as the B mixture components comprising
T% of the total weight:

b
B = arg min <kz_1 wg > T)

In order to eliminate noise and reduce computation, we sub-
tract the first frame of video (which normally contains no
passengers and bags) from all subsequent frames of video.
Then we model the background using 7' = 0.3, since pixels
in active areas are frequently crossed by moving objects.

Thus, each pixel at each point in time is classified as fore-
ground or background. We next segment the foreground
pixels into blob regions using a two-pass connected com-
ponents algorithm [4]. We use Kalman filtering in the pre-
diction for each Gaussian in order to robustly track light-
ing changes. Figure 4 shows a sample result of the instan-
taneous foreground/background segmentation. Blobs de-
tected in the conveyor belt area (Area B in Figure 3(b)) are
treated as bags, while blobs detected elsewhere are detected
as passengers.

(6)

Figure 4. (a) Foreground extracted from the image. (b) Classifica-
tion of detections as bags (red boxes) or passengers (white boxes).

5.1. Passenger Tracker

The detected passenger blobs are relatively easy to track
against the light-colored floor. We apply the standard ap-
proach of associating blobs that have minimal Euclidean
distance between two consecutive frames, which can han-
dle most of the tracking task. However, we do have to deal
with several merge-and-split events (for example, when a
passenger interacts with a gate agent). It is critical to pre-
serve correct passenger labels throughout such events.

Our efficient algorithm maintains the centroid, bounding
box and orientation of each passenger blob. The orientation
of the blob is defined as the angle between the x-axis and the
major axis of the ellipse that has the same second-moment
matrix as the blob. When two blobs merge, we maintain
individual passenger positions as points on the major axis
of the merged blob, separated by 60% of the major axis
length. This leads to accurate passenger labels and loca-
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tions throughout the merge and split process, as illustrated
in Figure 5.

®

Figure 5. Updating labels when two blobs merge. Each merged
blob (a) is modeled as an ellipse (b). The passenger labels and lo-
cations are maintained at points along the major axis of this ellipse
(c)-(g) until they separate (h).
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5.2. Baggage Tracker

Bags move along the conveyer belt region, the most crit-
ical area to monitor. With the exception of large suitcases,
bags and other passenger belongings are put into regulation-
size bins. Since the bags and bins only move along the one-
dimensional conveyor belt region, the tracking problem is
more constrained. However, bag tracking is more complex
than passenger tracking, since bags undergo complex inter-
actions and are both smaller and lower-contrast.

Since the conveyer belt region’s background is dark,
dark-colored bags are difficult to detect. Hence, we ap-
ply histogram equalization to the foreground image, as il-
lustrated in Figure 6. Figure 6(a) shows a black bag on the
conveyer belt. Figure 6(b) is the detected foreground image,
in which the black bag is nearly invisible. After histogram
equalization of the foreground image, we get a grey-scale
image as shown in Figure 6(c), in which the black bag can
be easily detected as a blob. The final result is shown in
Figure 6(d).

A bigger problem is that bags typically get extremely
close to each other, making them hard to differentiate. The
simple blob tracker often returns a connected component
containing more than one bag. In order to separate them,
we use the following method.

For each tracked blob with an area larger than a thresh-
old (i.e., twice the area of a regulation-size bin), we try to
evenly divide the blob into n parts, varying n from 1 to 5.
We assign a score f(n) to each number of parts as

%Z?:l std(I;)

J(n) = std([mean (Iy) mean (I2)

mean (I,)])
@)

Here, I, is the vector of pixel intensities corresponding to

the 7*" division of the blob. We select the first n for which



(c)
Figure 6. Using histogram equalization to detect dark-colored
bags. (a) Original image. (b) Foreground extracted. (c) Fore-
ground after histogram equalization. (d) Detected connected com-
ponent and blob (the size of the annotation box is not related to the
actual size of the bag).

(a) (b) (d)

fin+1) = f(n) <e (8)

where € is a threshold. Figure 7 shows the result of sepa-
rating bags from a single detected blob using this method.
The mean and standard deviation of the intensity for each
labeled bag can also help to disambiguate the bags.

(b)

Figure 7. Result of splitting bags. (a) When there are two bags
in a connected component, f(n) increases sharply from n = 1 to
n = 2 and remains almost unchanged from n = 2ton = 3. (b)
When there are three bags in a connected component, f(n) peaks
atn = 3.

6. Analysis and Baggage Association

The main purpose of the system is to maintain the asso-
ciation between bags and passengers in real time, using the
results from the trackers described above. For the purposes
of association, we define four semantically important zones,
as depicted in Figure 3(b). These are the Bag Drop Area,
in which passengers approach the conveyor belt area and
place bags and bins onto the belt; the Conveyer Belt upon
which bags move; the Pick Up Area, in which passengers
recover their bags; and the Staff Area from which agents
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can rearrange bags on the conveyor belt. We now describe
the processing that takes place in each region.

6.1. Bag Drop

There are two analysis tasks for the Bag Drop Area, as
illustrated in Figure 8. First, we label the passengers as they
enter the region from the boarding pass checkpoint. Since
the passengers singly enter this area from one direction, it
is not difficult to label each passenger and filter out other
objects and noise. We retain several properties for each pas-
senger over the 10 most recent frames, including position in
the area, size (area of the connected component), direction
of motion, and average intensity. We assign each passenger
blob detected in the current frame the label of the passenger
blob in the previous frame with the closest parameters (i.e.,
minimum distance between feature vectors). If no blob de-
tected in the current frame matches a label in the previous
frame, we assume that the object is temporarily stationary,
and its parameters should remain unchanged. If the label
remains unmatched for several consecutive frames and the
most recent position was close to the exit boundary of the
Bag Drop Area, the passenger label is put into a queue for
entering the Pick-Up area.

—»(_Get new frame )
Subtraction
Update Tracker

N
For each blob
No New Object?
atch existing
Yes

labels? .
Assign new label

(_Previous frame )

Figure 8. The processing flowchart for the Bag Drop Area.

The second task in the Bag Drop Area is to initially as-
sign bags to passengers. When a new bag blob is detected
in the Conveyer Belt area, we associate it with the label of
the nearest passenger blob. More than one bag can be asso-
ciated with a passenger.



6.2. Conveyor Belt Queue

The state of each bag is maintained using a finite state
machine, as illustrated in Figure 9. The expected series of
states for a bag is New, On Belt, Pending Decision, and Nor-
mal (meaning the correct person picked up the bag). There
are also two queues containing bag labels: one for bags on
the belt, and one for bags that have been removed from the
belt by staff.
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Exiting to the “ OnBelt - to the x\
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Staffarea __— \ / Pick-Up / Exiting

!/ area Pick-up

— Area &
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|—From Staff Passenger )1 Wrong Bag |
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Figure 9. State machine for bag labels.
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In practice, bags are frequently re-scanned by staff due
to abnormalities detected by the X-ray machine. We simu-
lated these events in our experiments; for example, bottles
of water and laptops were put in some bags. After such bags
go through the X-ray machine, they are taken off the line for
re-scan by staff, stopping the conveyor belt and reordering
the bag queue. These events are characteristic of the airport
surveillance problem and are important to process correctly.
When no change in position is detected for most of the bags
for several consecutive frames, the conveyer belt area enters
a “paused” state in which it is easy to detect the label of the
bag that has been taken away from the belt. This label is
removed from the belt queue and added to the re-ordering
queue.

When the re-ordering queue is non-empty, the algorithm
pays special attention to the area immediately in front of the
X-ray machine intake. Normally, a staff agent will move
the bags in line for the X-ray machine, insert the bag that
must be rescanned, and restart the conveyor belt. We track
the blobs in the Staff Area to determine when they move
from the exit of the X-ray machine to its intake to deter-
mine when and where in the bag queue a re-ordered bag
should be inserted. We compare the characteristics recorded
for the bags in the re-ordering queue to new blobs on the
conveyor belt entering from the staff side. The bag queue
is updated accordingly upon an acceptable match (i.e., the
property vector error is below a threshold). Otherwise we
search the whole conveyer belt queue to match the label be-
ing re-ordered and find the best match.

Figure 10 summarizes the processing flow of the con-
veyer belt area.
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Figure 10. The processing flowchart for the conveyer belt area.

6.3. Pick-Up Area

The Pick-Up Area is crucial for deciding whether the
bags were picked up by the right passengers. When a
bag exits the X-ray machine, it enters the Pending Deci-
sion state. When it leaves the conveyor belt area, we de-
tect the passenger blob with which it merges, and compare
the bag owner label with the bag recipient label. to deter-
mine whether the association is correct (Normal) or incor-
rect (Wrong Bag). Decisions are not finalized until after
passengers leave the tracking area (e.g., in case a bag is
temporarily picked up or moved by someone other than its
owner).

7. Experimental Results

We tested the tracking and association algorithms on 4
complete runs of simulation (25 minutes total).The first run
was used to tune parameters for the algorithms, which were
unchanged for the remaining runs. In all, 47 passengers
and 71 bags were tracked and associated. Table 1 reports
the results of the experiment. The first two rows report the
performance of the tracker on bags and passengers. We can
see the passengers were tracked flawlessly, while we had
3 false alarms and 4 misses for the bags. We found these
errors to result from “ghost images” introduced when we
created the floor mosaic image, since the belt and bags are
significantly higher than the floor plane.

The second two rows report the performance on the as-
sociation task. Out of the 71 true bags, 69 of them were
normal and 2 were wrong-bag events that we introduced.
The algorithms detected the vast majority of the events suc-
cessfully. There is one false alarm indicating that a bin was



Tracker Ground Truth | Detected | False alarm
Passengers 47 47 0
Bags 71 67 3
Normal 69 64 0
Wrong Bag 2 2 1

Table 1. Result of the experiment

mistakenly taken by another passenger. In fact, the owner
of the bin removed their belongings from it, and the bin was
re-arranged with other bins by another passenger.

Figure 11 shows several sample frames of a tracking and
analysis result. From Figure 11(a)-(b), we see that passen-
ger 2 has multiple bags on the conveyer belt (2 bins and a
bag), and that they are correctly associated to the owner. In
Figure 11(a), one of the bins is going through the X-ray ma-
chine and thus is not visible, but its label remains stable in-
side the X-ray machine. We see from Figure 11(f) that the
passenger tracker can effectively track all the targets even
when the Bag Drop area is crowded. From Figure 11(d)-(e)
we see that the passenger going through the metal detector
is tracked precisely. Please refer to the accompanying video
for a better view of the results.

Figure 11(d)-(f) shows examples of two difficult situa-
tions. In Figure 11(d), passenger 2 has taken away his bags
and left the monitoring area; however, the bin he used re-
mains on the table in the Pick-Up area. In Figure 11(e),
passenger 3 removes his belongings from his bin and puts
his bin on top of the bin used by passenger 2. Hence, the la-
bels of the two bins overlap. In general, it is difficult to tell
when a bin is empty and and should no longer be associated
with a passenger, which may cause false alarms in associ-
ation. In Figure 11(e) we see a staff member beginning to
re-scan a bin belonging to passenger 4, removing it from
the Pick-Up area. In Figure 11(f), the bin has been placed
in the Bag Drop area ready for re-scanning. Bags to be re-
scanned are often crowded by other bins/bags, increasing
the likelihood of mixing labels.

8. Conclusions and Future Work

We discussed the design of an airport security checkpoint
surveillance system. We addressed the setup and calibration
of a large camera network and algorithms for tracking and
associating passengers and bags. The system is robust to
the crowded scenes and complex interactions typical of the
airport environment.

From the experimental results we can see that while most
of the bags were correctly tracked and associated, some
complicated situations remain. For example, staff may
merge or rearrange bin contents or introduce entirely new
bins never touched by a passenger. In more complex videos
not analyzed here, families enter the checkpoint and the
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person-to-bag association problem is much harder (and cor-
rect association in the pick-up area is less critical, as long as
all bags are recovered by the correct family). We plan to in-
vestigate more robust and adaptive tracking and association
algorithms for such cases. Additionally, we want the system
to be capable of detecting and understanding more types
of abnormal behaviors besides baggage mis-associations,
leveraging the images from the continuously-panning PTZ
cameras. We also imagine an active vision system in which
the PTZ cameras adaptively focus on abnormal or difficult-
to-process events. Finally, we hope to extend our camera
network tracking testbed to further applications, including
security monitoring and anomaly detection, flow analysis in
crowded scenes, and other large-scale environment simula-
tions.
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